Skip to main content
Glama

assess_drug_likeness

Evaluate drug-likeness of chemical compounds using Lipinski's Rule of Five, Veber rules, and PAINS filters by inputting PubChem CID or SMILES string.

Instructions

Assess drug-likeness using Lipinski Rule of Five, Veber rules, and PAINS filters

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
cidNoPubChem Compound ID (CID)
smilesNoSMILES string (alternative to CID)

Implementation Reference

  • Handler function that executes the assess_drug_likeness tool logic. Currently returns a placeholder message indicating implementation is pending.
    private async handleAssessDrugLikeness(args: any) { return { content: [{ type: 'text', text: JSON.stringify({ message: 'Drug-likeness assessment not yet implemented', args }, null, 2) }] }; }
  • Tool registration entry including name, description, and input schema definition for assess_drug_likeness.
    { name: 'assess_drug_likeness', description: 'Assess drug-likeness using Lipinski Rule of Five, Veber rules, and PAINS filters', inputSchema: { type: 'object', properties: { cid: { type: ['number', 'string'], description: 'PubChem Compound ID (CID)' }, smiles: { type: 'string', description: 'SMILES string (alternative to CID)' }, }, required: [], }, },
  • src/index.ts:772-773 (registration)
    Dispatch case in the tool handler switch statement that routes calls to the assess_drug_likeness handler.
    case 'assess_drug_likeness': return await this.handleAssessDrugLikeness(args);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Augmented-Nature/PubChem-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server