Skip to main content
Glama

publish_changeset

Publish a changeset in ServiceNow by providing the changeset ID and optional notes to update and deploy configurations or updates across the instance.

Instructions

Publish a changeset in ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
paramsYes

Implementation Reference

  • The core handler function implementing the publish_changeset tool. It validates input parameters, retrieves ServiceNow instance details, and performs a PATCH request to set the changeset state to 'published'.
    def publish_changeset( auth_manager: AuthManager, server_config: ServerConfig, params: Union[Dict[str, Any], PublishChangesetParams], ) -> Dict[str, Any]: """ Publish a changeset in ServiceNow. Args: auth_manager: The authentication manager. server_config: The server configuration. params: The parameters for publishing a changeset. Can be a dictionary or a PublishChangesetParams object. Returns: The published changeset. """ # Unwrap and validate parameters result = _unwrap_and_validate_params( params, PublishChangesetParams, required_fields=["changeset_id"] ) if not result["success"]: return result validated_params = result["params"] # Get the instance URL instance_url = _get_instance_url(auth_manager, server_config) if not instance_url: return { "success": False, "message": "Cannot find instance_url in either server_config or auth_manager", } # Get the headers headers = _get_headers(auth_manager, server_config) if not headers: return { "success": False, "message": "Cannot find get_headers method in either auth_manager or server_config", } # Add Content-Type header headers["Content-Type"] = "application/json" # Prepare the request data for the publish action data = { "state": "published", } # Add publish notes if provided if validated_params.publish_notes: data["description"] = validated_params.publish_notes # Make the API request url = f"{instance_url}/api/now/table/sys_update_set/{validated_params.changeset_id}" try: response = requests.patch(url, json=data, headers=headers) response.raise_for_status() result = response.json() return { "success": True, "message": "Changeset published successfully", "changeset": result["result"], } except requests.exceptions.RequestException as e: logger.error(f"Error publishing changeset: {e}") return { "success": False, "message": f"Error publishing changeset: {str(e)}", }
  • Pydantic BaseModel defining the input schema for the publish_changeset tool, including required changeset_id and optional publish_notes.
    class PublishChangesetParams(BaseModel): """Parameters for publishing a changeset.""" changeset_id: str = Field(..., description="Changeset ID or sys_id") publish_notes: Optional[str] = Field(None, description="Notes for publishing")
  • Tool registration in the get_tool_definitions() function's dictionary. Associates the tool name with its handler (publish_changeset_tool), input schema (PublishChangesetParams), return type (str), description, and serialization method.
    "publish_changeset": ( publish_changeset_tool, PublishChangesetParams, str, "Publish a changeset in ServiceNow", "str", # Tool returns simple message ),
  • Shared helper function used by publish_changeset (and other tools) to validate and unwrap input parameters against the Pydantic schema.
    def _unwrap_and_validate_params( params: Union[Dict[str, Any], BaseModel], model_class: Type[T], required_fields: Optional[List[str]] = None ) -> Dict[str, Any]: """ Unwrap and validate parameters. Args: params: The parameters to unwrap and validate. Can be a dictionary or a Pydantic model. model_class: The Pydantic model class to validate against. required_fields: List of fields that must be present. Returns: A dictionary with success status and validated parameters or error message. """ try: # Handle case where params is already a Pydantic model if isinstance(params, BaseModel): # If it's already the correct model class, use it directly if isinstance(params, model_class): model_instance = params # Otherwise, convert to dict and create new instance else: model_instance = model_class(**params.dict()) # Handle dictionary case else: # Create model instance model_instance = model_class(**params) # Check required fields if required_fields: missing_fields = [] for field in required_fields: if getattr(model_instance, field, None) is None: missing_fields.append(field) if missing_fields: return { "success": False, "message": f"Missing required fields: {', '.join(missing_fields)}", } return { "success": True, "params": model_instance, } except Exception as e: return { "success": False, "message": f"Invalid parameters: {str(e)}", }
  • Helper function to retrieve the ServiceNow instance URL from either auth_manager or server_config, used by publish_changeset.
    def _get_instance_url(auth_manager: AuthManager, server_config: ServerConfig) -> Optional[str]: """ Get the instance URL from either auth_manager or server_config. Args: auth_manager: The authentication manager. server_config: The server configuration. Returns: The instance URL or None if not found. """ # Try to get instance_url from server_config if hasattr(server_config, 'instance_url'): return server_config.instance_url # Try to get instance_url from auth_manager if hasattr(auth_manager, 'instance_url'): return auth_manager.instance_url # If neither has instance_url, check if auth_manager is actually a ServerConfig # and server_config is actually an AuthManager (parameters swapped) if hasattr(server_config, 'get_headers') and not hasattr(auth_manager, 'get_headers'): if hasattr(auth_manager, 'instance_url'): return auth_manager.instance_url logger.error("Cannot find instance_url in either auth_manager or server_config") return None

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/echelon-ai-labs/servicenow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server