Skip to main content
Glama

list_workflows

Retrieve and filter workflows from ServiceNow instances using customizable parameters like active status, name, and query limits for efficient workflow management.

Instructions

List workflows from ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
paramsYes

Implementation Reference

  • The handler function that executes the list_workflows tool logic. It unwraps parameters, handles auth/config ordering, builds ServiceNow query parameters, makes a GET request to /api/now/table/wf_workflow, and returns the workflows list with count and total.
    def list_workflows( auth_manager: AuthManager, server_config: ServerConfig, params: Dict[str, Any], ) -> Dict[str, Any]: """ List workflows from ServiceNow. Args: auth_manager: Authentication manager server_config: Server configuration params: Parameters for listing workflows Returns: Dictionary containing the list of workflows """ params = _unwrap_params(params, ListWorkflowsParams) # Get the correct auth_manager and server_config try: auth_manager, server_config = _get_auth_and_config(auth_manager, server_config) except ValueError as e: logger.error(f"Error getting auth and config: {e}") return {"error": str(e)} # Convert parameters to ServiceNow query format query_params = { "sysparm_limit": params.get("limit", 10), "sysparm_offset": params.get("offset", 0), } # Build query string query_parts = [] if params.get("active") is not None: query_parts.append(f"active={str(params['active']).lower()}") if params.get("name"): query_parts.append(f"nameLIKE{params['name']}") if params.get("query"): query_parts.append(params["query"]) if query_parts: query_params["sysparm_query"] = "^".join(query_parts) # Make the API request try: headers = auth_manager.get_headers() url = f"{server_config.instance_url}/api/now/table/wf_workflow" response = requests.get(url, headers=headers, params=query_params) response.raise_for_status() result = response.json() return { "workflows": result.get("result", []), "count": len(result.get("result", [])), "total": int(response.headers.get("X-Total-Count", 0)), } except requests.RequestException as e: logger.error(f"Error listing workflows: {e}") return {"error": str(e)} except Exception as e: logger.error(f"Unexpected error listing workflows: {e}") return {"error": str(e)}
  • Pydantic model defining the input schema for the list_workflows tool, including optional parameters for pagination, filtering by active status, name, and custom query.
    class ListWorkflowsParams(BaseModel): """Parameters for listing workflows.""" limit: Optional[int] = Field(10, description="Maximum number of records to return") offset: Optional[int] = Field(0, description="Offset to start from") active: Optional[bool] = Field(None, description="Filter by active status") name: Optional[str] = Field(None, description="Filter by name (contains)") query: Optional[str] = Field(None, description="Additional query string")
  • Tool registration entry in get_tool_definitions() dictionary, associating 'list_workflows' with its implementation function (list_workflows_tool), input schema (ListWorkflowsParams), return type hint, description, and serialization method.
    "list_workflows": ( list_workflows_tool, ListWorkflowsParams, str, # Expects JSON string "List workflows from ServiceNow", "json", # Tool returns list/dict ),
  • Helper function used by list_workflows (and other tools) to flexibly resolve AuthManager and ServerConfig arguments, handling potential order swapping.
    def _get_auth_and_config( auth_manager_or_config: Union[AuthManager, ServerConfig], server_config_or_auth: Union[ServerConfig, AuthManager], ) -> tuple[AuthManager, ServerConfig]: """ Get the correct auth_manager and server_config objects. This function handles the case where the parameters might be swapped. Args: auth_manager_or_config: Either an AuthManager or a ServerConfig. server_config_or_auth: Either a ServerConfig or an AuthManager. Returns: tuple[AuthManager, ServerConfig]: The correct auth_manager and server_config. Raises: ValueError: If the parameters are not of the expected types. """ # Check if the parameters are in the correct order if isinstance(auth_manager_or_config, AuthManager) and isinstance(server_config_or_auth, ServerConfig): return auth_manager_or_config, server_config_or_auth # Check if the parameters are swapped if isinstance(auth_manager_or_config, ServerConfig) and isinstance(server_config_or_auth, AuthManager): return server_config_or_auth, auth_manager_or_config # If we get here, at least one of the parameters is not of the expected type if hasattr(auth_manager_or_config, "get_headers"): auth_manager = auth_manager_or_config elif hasattr(server_config_or_auth, "get_headers"): auth_manager = server_config_or_auth else: raise ValueError("Cannot find get_headers method in either auth_manager or server_config") if hasattr(auth_manager_or_config, "instance_url"): server_config = auth_manager_or_config elif hasattr(server_config_or_auth, "instance_url"): server_config = server_config_or_auth else: raise ValueError("Cannot find instance_url attribute in either auth_manager or server_config") return auth_manager, server_config
  • Helper function to unwrap tool parameters from Pydantic model to dict if necessary.
    def _unwrap_params(params: Any, param_class: Type[T]) -> Dict[str, Any]: """ Unwrap parameters if they're wrapped in a Pydantic model. This helps handle cases where the parameters are passed as a model instead of a dict. """ if isinstance(params, dict): return params if isinstance(params, param_class): return params.dict(exclude_none=True) return params

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/echelon-ai-labs/servicenow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server