Skip to main content
Glama

calculate_expression_correlation

Analyze gene expression correlations across tissues using GTEx data to identify co-expression patterns and functional relationships between genes.

Instructions

Calculate expression correlation between genes across tissues

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
gencodeIdsYesArray of GENCODE gene IDs to compare
datasetIdNoGTEx dataset ID (default: gtex_v8)gtex_v8

Implementation Reference

  • Main handler function that fetches median gene expression data for multiple genes and computes pairwise Pearson correlations across common tissues, returning formatted correlation results.
    async calculateExpressionCorrelation(args: any) { if (!args.geneIds || !Array.isArray(args.geneIds) || args.geneIds.length < 2) { throw new Error('geneIds parameter is required and must contain at least 2 gene IDs for correlation analysis'); } if (args.geneIds.length > 10) { return { content: [{ type: "text", text: "Maximum 10 genes can be processed for correlation analysis." }] }; } // Get median expression for all genes const result = await this.apiClient.getMedianGeneExpression( args.geneIds, args.datasetId || 'gtex_v8' ); if (result.error) { return { content: [{ type: "text", text: `Error calculating expression correlation: ${result.error}` }], isError: true }; } const expressions = result.data || []; if (expressions.length === 0) { return { content: [{ type: "text", text: "No expression data found for correlation analysis." }] }; } // Organize by gene and tissue const geneData: { [gene: string]: { [tissue: string]: number } } = {}; const geneNames: { [gene: string]: string } = {}; expressions.forEach(expr => { const geneKey = expr.gencodeId; geneNames[geneKey] = expr.geneSymbol; if (!geneData[geneKey]) { geneData[geneKey] = {}; } geneData[geneKey][expr.tissueSiteDetailId] = expr.median; }); // Find common tissues const genes = Object.keys(geneData); const commonTissues = Object.keys(geneData[genes[0]] || {}); // Calculate pairwise correlations let output = `**Gene Expression Correlation Analysis**\n`; output += `Genes: ${genes.length}\n`; output += `Common tissues: ${commonTissues.length}\n`; output += `Dataset: ${expressions[0]?.datasetId}\n\n`; if (commonTissues.length < 5) { output += `⚠️ **Warning**: Only ${commonTissues.length} common tissues found. Correlation analysis requires more data points for reliability.\n\n`; } output += `**Pairwise Correlations:**\n`; for (let i = 0; i < genes.length; i++) { for (let j = i + 1; j < genes.length; j++) { const gene1 = genes[i]; const gene2 = genes[j]; // Calculate Pearson correlation const values1 = commonTissues.map(t => geneData[gene1][t]).filter(v => v !== undefined); const values2 = commonTissues.map(t => geneData[gene2][t]).filter(v => v !== undefined); if (values1.length !== values2.length || values1.length < 3) { output += `• **${geneNames[gene1]}** vs **${geneNames[gene2]}**: Insufficient data\n`; continue; } const correlation = this.calculatePearsonCorrelation(values1, values2); const strength = Math.abs(correlation) > 0.7 ? "Strong" : Math.abs(correlation) > 0.4 ? "Moderate" : "Weak"; output += `• **${geneNames[gene1]}** vs **${geneNames[gene2]}**: r = ${correlation.toFixed(3)} (${strength})\n`; } } output += `\n**Analysis Notes:**\n`; output += `- Correlations calculated using median expression across tissues\n`; output += `- |r| > 0.7: Strong correlation, |r| > 0.4: Moderate correlation\n`; output += `- Based on ${commonTissues.length} tissue samples\n`; return { content: [{ type: "text", text: output }] }; }
  • Input schema defining the parameters for the calculate_expression_correlation tool: array of GENCODE gene IDs (required) and optional datasetId.
    inputSchema: { type: "object", properties: { gencodeIds: { type: "array", items: { type: "string" }, description: "Array of GENCODE gene IDs to compare" }, datasetId: { type: "string", description: "GTEx dataset ID (default: gtex_v8)", default: "gtex_v8" } }, required: ["gencodeIds"] }
  • src/index.ts:172-191 (registration)
    Tool registration in the listTools response, including name, description, and input schema.
    { name: "calculate_expression_correlation", description: "Calculate expression correlation between genes across tissues", inputSchema: { type: "object", properties: { gencodeIds: { type: "array", items: { type: "string" }, description: "Array of GENCODE gene IDs to compare" }, datasetId: { type: "string", description: "GTEx dataset ID (default: gtex_v8)", default: "gtex_v8" } }, required: ["gencodeIds"] } },
  • src/index.ts:657-662 (registration)
    Dispatch logic in CallToolRequest handler that routes calls to the expressionHandlers.calculateExpressionCorrelation method.
    if (name === "calculate_expression_correlation") { return await expressionHandlers.calculateExpressionCorrelation({ geneIds: args?.gencodeIds || [], datasetId: args?.datasetId }); }
  • Private helper method that computes the Pearson correlation coefficient between two arrays of expression values.
    private calculatePearsonCorrelation(x: number[], y: number[]): number { const n = x.length; if (n !== y.length || n === 0) return 0; const sumX = x.reduce((sum, val) => sum + val, 0); const sumY = y.reduce((sum, val) => sum + val, 0); const sumXY = x.reduce((sum, val, i) => sum + val * y[i], 0); const sumX2 = x.reduce((sum, val) => sum + val * val, 0); const sumY2 = y.reduce((sum, val) => sum + val * val, 0); const numerator = n * sumXY - sumX * sumY; const denominator = Math.sqrt((n * sumX2 - sumX * sumX) * (n * sumY2 - sumY * sumY)); return denominator === 0 ? 0 : numerator / denominator; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Augmented-Nature/GTEx-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server