Skip to main content
Glama

sem_guide

Generate structural equation modeling guides for CFA, path, full SEM, and multigroup analyses to support quantitative research design and interpretation.

Instructions

구조방정식모형 가이드 (측정모형, 구조모형)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
model_typeYes모형 유형
fit_indicesNo적합도 지수

Implementation Reference

  • The primary handler function implementing the sem_guide tool. It returns guidelines on SEM model fit indices (acceptable and good thresholds) and an example R code snippet using the lavaan package for structural equation modeling.
    function handleSemGuide(args: Record<string, unknown>) { return { model_type: args.model_type, fit_indices: { acceptable: "CFI > .90, TLI > .90, RMSEA < .08, SRMR < .08", good: "CFI > .95, TLI > .95, RMSEA < .06, SRMR < .05" }, r_code: "library(lavaan)\nfit <- sem(model, data = df)\nsummary(fit, fit.measures = TRUE)" }; }
  • The input schema defining parameters for the sem_guide tool: model_type (enum: cfa, path, full_sem, multigroup) as required, and optional fit_indices object.
    inputSchema: { type: "object", properties: { model_type: { type: "string", enum: ["cfa", "path", "full_sem", "multigroup"], description: "모형 유형" }, fit_indices: { type: "object", description: "적합도 지수" }, }, required: ["model_type"], },
  • Registration of the sem_guide tool in the exported tools array, including name, description, and full input schema.
    { name: "sem_guide", description: "구조방정식모형 가이드 (측정모형, 구조모형)", inputSchema: { type: "object", properties: { model_type: { type: "string", enum: ["cfa", "path", "full_sem", "multigroup"], description: "모형 유형" }, fit_indices: { type: "object", description: "적합도 지수" }, }, required: ["model_type"], }, },
  • Handler dispatch for sem_guide in the main handleToolCall switch statement, routing calls to the handleSemGuide function.
    case "sem_guide": return handleSemGuide(args);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/quantmaster-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server