Skip to main content
Glama

mlm_guide

Guide to multilevel modeling with ICC calculation, random effects specification, and cross-level interaction analysis for hierarchical data structures.

Instructions

다층모형 가이드 (ICC, 랜덤효과, 교차수준 상호작용)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
levelsYes수준 수 (2 or 3)
random_effectsNo랜덤효과
cross_levelNo교차수준 상호작용

Implementation Reference

  • Registration of the 'mlm_guide' tool in the exported tools array, including name, description, and input schema.
    { name: "mlm_guide", description: "다층모형 가이드 (ICC, 랜덤효과, 교차수준 상호작용)", inputSchema: { type: "object", properties: { levels: { type: "number", description: "수준 수 (2 or 3)" }, random_effects: { type: "array", items: { type: "string" }, description: "랜덤효과" }, cross_level: { type: "boolean", description: "교차수준 상호작용" }, }, required: ["levels"], }, },
  • Input schema for the mlm_guide tool defining parameters: levels (required), random_effects, cross_level.
    inputSchema: { type: "object", properties: { levels: { type: "number", description: "수준 수 (2 or 3)" }, random_effects: { type: "array", items: { type: "string" }, description: "랜덤효과" }, cross_level: { type: "boolean", description: "교차수준 상호작용" }, }, required: ["levels"], },
  • Handler function that executes the mlm_guide tool, providing key multilevel modeling concepts (ICC, random slopes, cross-level interactions) and example lme4 R code.
    function handleMlmGuide(args: Record<string, unknown>) { return { levels: args.levels, key_concepts: { icc: "Intraclass Correlation - 집단간 분산 비율", random_slope: "기울기의 집단간 변이 허용", cross_level: "수준간 상호작용" }, r_code: "library(lme4)\nfit <- lmer(y ~ x1 + (1 + x1 | group), data = df)" }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/quantmaster-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server