Skip to main content
Glama

psm_guide

Perform propensity score matching for causal inference by selecting matching methods and checking covariate balance in quantitative research.

Instructions

성향점수매칭 가이드 (추정, 매칭, 균형검정)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
matching_methodYes매칭 방법
balance_checkNo균형검정 포함

Implementation Reference

  • The main handler function for the 'psm_guide' tool. It returns a guide including steps for propensity score matching and balance metrics based on the input matching_method.
    function handlePsmGuide(args: Record<string, unknown>) { return { matching_method: args.matching_method, steps: [ "1. Propensity score estimation (logit/probit)", "2. Check common support", "3. Perform matching", "4. Balance check (standardized differences <0.1)", "5. Estimate treatment effect on matched sample" ], balance_metrics: ["Standardized mean difference", "Variance ratio", "Overlap plots"] }; }
  • The input schema definition for the 'psm_guide' tool, specifying parameters like matching_method (required, enum) and optional balance_check.
    name: "psm_guide", description: "성향점수매칭 가이드 (추정, 매칭, 균형검정)", inputSchema: { type: "object", properties: { matching_method: { type: "string", enum: ["nearest", "caliper", "kernel", "full"], description: "매칭 방법" }, balance_check: { type: "boolean", description: "균형검정 포함" }, }, required: ["matching_method"], }, },
  • The registration of the 'psm_guide' tool handler in the switch statement of handleToolCall function.
    case "psm_guide": return handlePsmGuide(args);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/quantmaster-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server