Skip to main content
Glama

diagnose_regression

Diagnose regression model issues like multicollinearity, heteroscedasticity, and autocorrelation to validate statistical assumptions and improve analysis accuracy.

Instructions

회귀분석 진단 가이드 (다중공선성, 이분산, 자기상관 등)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
issuesYes의심되는 문제 (multicollinearity, heteroscedasticity, autocorrelation, outliers)
model_typeNo모형 유형

Implementation Reference

  • Handler function that takes issues array and returns diagnostic tests, code snippets, and solutions for common regression problems like multicollinearity, heteroscedasticity, and autocorrelation.
    function handleDiagnoseRegression(args: Record<string, unknown>) { const issues = args.issues as string[]; const diagnostics: Record<string, any> = { multicollinearity: { tests: ["VIF (>10 문제)", "Condition Number (>30 문제)", "Correlation Matrix"], r_code: "car::vif(model)", stata_code: "vif", solution: "변수 제거, PCA, Ridge regression" }, heteroscedasticity: { tests: ["Breusch-Pagan test", "White test", "Residual plot"], r_code: "lmtest::bptest(model)", stata_code: "hettest", solution: "Robust SE, WLS, Log transformation" }, autocorrelation: { tests: ["Durbin-Watson", "Breusch-Godfrey", "ACF plot"], r_code: "lmtest::dwtest(model)", stata_code: "dwstat", solution: "HAC SE, GLS, ARIMA errors" } }; return { issues, diagnostics: issues.map(issue => diagnostics[issue] || { issue, message: "진단 정보 검색 필요" }) }; }
  • Registration of the 'diagnose_regression' tool in the main tools array, including name, description, and input schema.
    name: "diagnose_regression", description: "회귀분석 진단 가이드 (다중공선성, 이분산, 자기상관 등)", inputSchema: { type: "object", properties: { issues: { type: "array", items: { type: "string" }, description: "의심되는 문제 (multicollinearity, heteroscedasticity, autocorrelation, outliers)" }, model_type: { type: "string", description: "모형 유형" }, }, required: ["issues"], }, },
  • Input schema defining the expected parameters: issues (array of strings) required, model_type optional.
    inputSchema: { type: "object", properties: { issues: { type: "array", items: { type: "string" }, description: "의심되는 문제 (multicollinearity, heteroscedasticity, autocorrelation, outliers)" }, model_type: { type: "string", description: "모형 유형" }, }, required: ["issues"], },
  • Switch case in handleToolCall that routes calls to the diagnose_regression handler.
    case "diagnose_regression": return handleDiagnoseRegression(args);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/quantmaster-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server