Skip to main content
Glama

check_assumptions

Validate statistical assumptions like normality, homoscedasticity, and independence for your analysis method to ensure reliable results.

Instructions

통계 가정 점검 가이드 (정규성, 등분산, 독립성 등)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
methodYes분석 방법
data_descriptionNo데이터 설명

Implementation Reference

  • Registration of the 'check_assumptions' tool in the tools array, including name, description, and input schema.
    name: "check_assumptions", description: "통계 가정 점검 가이드 (정규성, 등분산, 독립성 등)", inputSchema: { type: "object", properties: { method: { type: "string", description: "분석 방법" }, data_description: { type: "string", description: "데이터 설명" }, }, required: ["method"], }, },
  • Handler function that provides a checklist of statistical assumptions for the specified method and suggests diagnostic tests.
    function handleCheckAssumptions(args: Record<string, unknown>) { const method = args.method as string; return { method, assumptions_checklist: { ols: ["Linearity", "Normality of residuals", "Homoscedasticity", "Independence", "No multicollinearity"], logit: ["Binary DV", "Independence", "No multicollinearity", "Linearity in logit"], panel_fe: ["Strict exogeneity", "Time-invariant heterogeneity", "Within-variation"] }[method] || ["Method-specific assumptions - use search_stats_knowledge"], diagnostic_tests: ["검정 목록은 diagnose_regression 도구 사용"] }; }
  • Input schema for the check_assumptions tool defining the expected parameters.
    inputSchema: { type: "object", properties: { method: { type: "string", description: "분석 방법" }, data_description: { type: "string", description: "데이터 설명" }, }, required: ["method"], },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/quantmaster-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server