Skip to main content
Glama

meta_effect_size

Calculate and convert effect sizes for meta-analysis using various input formats like means, t-values, correlations, or odds ratios to standardize research findings.

Instructions

메타분석용 효과크기 계산 및 변환

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
input_typeYes입력 유형
valuesYes입력값
target_metricNo변환 목표 지표

Implementation Reference

  • Registration of the 'meta_effect_size' tool, including its name, description, and input schema for meta-analysis effect size calculation and conversion.
    name: "meta_effect_size", description: "메타분석용 효과크기 계산 및 변환", inputSchema: { type: "object", properties: { input_type: { type: "string", enum: ["means_sd", "t_value", "f_value", "correlation", "odds_ratio", "proportion"], description: "입력 유형" }, values: { type: "object", description: "입력값" }, target_metric: { type: "string", description: "변환 목표 지표" }, }, required: ["input_type", "values"], }, },
  • Input schema defining parameters for effect size input type, values, and optional target metric.
    inputSchema: { type: "object", properties: { input_type: { type: "string", enum: ["means_sd", "t_value", "f_value", "correlation", "odds_ratio", "proportion"], description: "입력 유형" }, values: { type: "object", description: "입력값" }, target_metric: { type: "string", description: "변환 목표 지표" }, }, required: ["input_type", "values"], },
  • Switch case registration mapping the tool name to its handler function.
    case "meta_effect_size": return handleMetaEffectSize(args);
  • Handler function for 'meta_effect_size' tool. Currently a placeholder that echoes input parameters and provides example R code using escale for standardized mean difference calculation from the metafor package.
    function handleMetaEffectSize(args: Record<string, unknown>) { return { input_type: args.input_type, values: args.values, r_code: "escalc(measure = 'SMD', m1i, sd1i, n1i, m2i, sd2i, n2i, data)" }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/quantmaster-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server