Skip to main content
Glama

meta_heterogeneity

Analyzes meta-analysis heterogeneity using Q, I², and τ² statistics to assess study variability and guide interpretation of pooled results.

Instructions

메타분석 이질성 해석 (Q, I², τ²)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
q_statNoQ 통계량
i_squaredYesI² 값
tau_squaredNoτ² 값
kYes연구 수

Implementation Reference

  • The handler function for the 'meta_heterogeneity' tool. It takes input arguments, extracts the I² value, and returns an interpretation of heterogeneity level (low, moderate, high) along with implications for fixed vs random effects models in meta-analysis.
    function handleMetaHeterogeneity(args: Record<string, unknown>) { const iSquared = args.i_squared as number; return { i_squared: iSquared, interpretation: iSquared < 25 ? "Low heterogeneity" : iSquared < 75 ? "Moderate heterogeneity" : "High heterogeneity", implications: iSquared > 50 ? "Random effects model 권장, 이질성 원인 탐색" : "Fixed effect 가능" }; }
  • The tool registration object including name, description, and input schema definition for validating parameters like Q statistic, I², τ², and number of studies.
    { name: "meta_heterogeneity", description: "메타분석 이질성 해석 (Q, I², τ²)", inputSchema: { type: "object", properties: { q_stat: { type: "number", description: "Q 통계량" }, i_squared: { type: "number", description: "I² 값" }, tau_squared: { type: "number", description: "τ² 값" }, k: { type: "number", description: "연구 수" }, }, required: ["i_squared", "k"], }, },
  • The switch case in handleToolCall that routes calls to the meta_heterogeneity tool to its handler function.
    case "meta_heterogeneity": return handleMetaHeterogeneity(args); case "publication_bias":

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/seanshin0214/quantmaster-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server