"""
Sparse Sentence Transformers module tests
"""
import os
import unittest
from txtai.vectors import SparseVectorsFactory
from txtai.util import SparseArray
class TestSparseSTVectors(unittest.TestCase):
"""
SparseSTVectors tests
"""
def testIndex(self):
"""
Test indexing with sentence-transformers vectors
"""
model = SparseVectorsFactory.create({"method": "sentence-transformers", "path": "sparse-encoder-testing/splade-bert-tiny-nq"})
ids, dimension, batches, stream = model.index([(0, "test", None)])
self.assertEqual(len(ids), 1)
self.assertEqual(dimension, 30522)
self.assertEqual(batches, 1)
self.assertIsNotNone(os.path.exists(stream))
# Test shape of serialized embeddings
with open(stream, "rb") as queue:
self.assertEqual(SparseArray().load(queue).shape, (1, 30522))