Skip to main content
Glama
testexternal.py1.33 kB
""" External module tests """ import os import unittest import numpy as np from txtai.vectors import External, VectorsFactory class TestExternal(unittest.TestCase): """ External vectors tests """ @classmethod def setUpClass(cls): """ Create External vectors instance. """ cls.model = VectorsFactory.create({"method": "external"}, None) def testIndex(self): """ Test indexing with external vectors """ # Generate dummy data data = np.random.rand(1000, 768).astype(np.float32) # Generate enough volume to test batching documents = [(x, data[x], None) for x in range(1000)] ids, dimension, batches, stream = self.model.index(documents) self.assertEqual(len(ids), 1000) self.assertEqual(dimension, 768) self.assertEqual(batches, 2) self.assertIsNotNone(os.path.exists(stream)) # Test shape of serialized embeddings with open(stream, "rb") as queue: self.assertEqual(np.load(queue).shape, (500, 768)) def testMethod(self): """ Test method is derived when transform function passed """ model = VectorsFactory.create({"transform": lambda x: x}, None) self.assertTrue(isinstance(model, External))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/neuml/txtai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server