# HFOnnx


Exports a Hugging Face Transformer model to ONNX. Currently, this works best with classification/pooling/qa models. Work is ongoing for sequence to
sequence models (summarization, transcription, translation).
## Example
The following shows a simple example using this pipeline.
```python
from txtai.pipeline import HFOnnx, Labels
# Model path
path = "distilbert-base-uncased-finetuned-sst-2-english"
# Export model to ONNX
onnx = HFOnnx()
model = onnx(path, "text-classification", "model.onnx", True)
# Run inference and validate
labels = Labels((model, path), dynamic=False)
labels("I am happy")
```
See the link below for a more detailed example.
| Notebook | Description | |
|:----------|:-------------|------:|
| [Export and run models with ONNX](https://github.com/neuml/txtai/blob/master/examples/18_Export_and_run_models_with_ONNX.ipynb) | Export models with ONNX, run natively in JavaScript, Java and Rust | [](https://colab.research.google.com/github/neuml/txtai/blob/master/examples/18_Export_and_run_models_with_ONNX.ipynb) |
## Methods
Python documentation for the pipeline.
### ::: txtai.pipeline.HFOnnx.__call__