# Objects


The Objects pipeline reads a list of images and returns a list of detected objects.
## Example
The following shows a simple example using this pipeline.
```python
from txtai.pipeline import Objects
# Create and run pipeline
objects = Objects()
objects("path to image file")
```
See the link below for a more detailed example.
| Notebook | Description | |
|:----------|:-------------|------:|
| [Generate image captions and detect objects](https://github.com/neuml/txtai/blob/master/examples/25_Generate_image_captions_and_detect_objects.ipynb) | Captions and object detection for images | [](https://colab.research.google.com/github/neuml/txtai/blob/master/examples/25_Generate_image_captions_and_detect_objects.ipynb) |
## Configuration-driven example
Pipelines are run with Python or configuration. Pipelines can be instantiated in [configuration](../../../api/configuration/#pipeline) using the lower case name of the pipeline. Configuration-driven pipelines are run with [workflows](../../../workflow/#configuration-driven-example) or the [API](../../../api#local-instance).
### config.yml
```yaml
# Create pipeline using lower case class name
objects:
# Run pipeline with workflow
workflow:
objects:
tasks:
- action: objects
```
### Run with Workflows
```python
from txtai import Application
# Create and run pipeline with workflow
app = Application("config.yml")
list(app.workflow("objects", ["path to image file"]))
```
### Run with API
```bash
CONFIG=config.yml uvicorn "txtai.api:app" &
curl \
-X POST "http://localhost:8000/workflow" \
-H "Content-Type: application/json" \
-d '{"name":"objects", "elements":["path to image file"]}'
```
## Methods
Python documentation for the pipeline.
### ::: txtai.pipeline.Objects.__init__
### ::: txtai.pipeline.Objects.__call__