# Tabular


The Tabular pipeline splits tabular data into rows and columns. The tabular pipeline is most useful in creating (id, text, tag) tuples to load into Embedding indexes.
## Example
The following shows a simple example using this pipeline.
```python
from txtai.pipeline import Tabular
# Create and run pipeline
tabular = Tabular("id", ["text"])
tabular("path to csv file")
```
See the link below for a more detailed example.
| Notebook | Description | |
|:----------|:-------------|------:|
| [Transform tabular data with composable workflows](https://github.com/neuml/txtai/blob/master/examples/22_Transform_tabular_data_with_composable_workflows.ipynb) | Transform, index and search tabular data | [](https://colab.research.google.com/github/neuml/txtai/blob/master/examples/22_Transform_tabular_data_with_composable_workflows.ipynb) |
## Configuration-driven example
Pipelines are run with Python or configuration. Pipelines can be instantiated in [configuration](../../../api/configuration/#pipeline) using the lower case name of the pipeline. Configuration-driven pipelines are run with [workflows](../../../workflow/#configuration-driven-example) or the [API](../../../api#local-instance).
### config.yml
```yaml
# Create pipeline using lower case class name
tabular:
idcolumn: id
textcolumns:
- text
# Run pipeline with workflow
workflow:
tabular:
tasks:
- action: tabular
```
### Run with Workflows
```python
from txtai import Application
# Create and run pipeline with workflow
app = Application("config.yml")
list(app.workflow("tabular", ["path to csv file"]))
```
### Run with API
```bash
CONFIG=config.yml uvicorn "txtai.api:app" &
curl \
-X POST "http://localhost:8000/workflow" \
-H "Content-Type: application/json" \
-d '{"name":"tabular", "elements":["path to csv file"]}'
```
## Methods
Python documentation for the pipeline.
### ::: txtai.pipeline.Tabular.__init__
### ::: txtai.pipeline.Tabular.__call__