Skip to main content
Glama
biocontext-ai

BioContextAI Knowledgebase MCP

Official

bc_search_pride_projects

Search the PRIDE database for mass spectrometry proteomics projects using keywords, organism, instrument, and experiment type filters to find relevant research data.

Instructions

Search PRIDE database for mass spectrometry proteomics projects using keywords and filters.

Returns: dict: Results array with project accessions, titles, descriptions, organisms, instruments, experiment types, count, search_criteria or error message.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
keywordNoSearch keywords (e.g., 'proteome', 'cancer', 'human')
organism_filterNoOrganism filter (e.g., 'Homo sapiens', 'human')
instrument_filterNoInstrument type filter (e.g., 'Orbitrap', 'LTQ')
experiment_type_filterNoExperiment type filter (e.g., 'TMT', 'Label-free')
page_sizeNoNumber of results to return (max 100)
sort_fieldNoSort field: submissionDate or publicationDatesubmissionDate
sort_directionNoSort direction: ASC or DESCDESC

Implementation Reference

  • Handler function for the 'search_pride_projects' tool (likely referred to as 'bc_search_pride_projects' in some contexts). Implements API call to PRIDE search endpoint, parameter validation, result processing, and error handling. Tool schema defined via Annotated parameters with Pydantic Field descriptions.
    @core_mcp.tool() def search_pride_projects( keyword: Annotated[ Optional[str], Field(description="Search keywords (e.g., 'proteome', 'cancer', 'human')"), ] = None, organism_filter: Annotated[ Optional[str], Field(description="Organism filter (e.g., 'Homo sapiens', 'human')"), ] = None, instrument_filter: Annotated[ Optional[str], Field(description="Instrument type filter (e.g., 'Orbitrap', 'LTQ')"), ] = None, experiment_type_filter: Annotated[ Optional[str], Field(description="Experiment type filter (e.g., 'TMT', 'Label-free')"), ] = None, page_size: Annotated[ int, Field(description="Number of results to return (max 100)"), ] = 20, sort_field: Annotated[ str, Field(description="Sort field: submissionDate or publicationDate"), ] = "submissionDate", sort_direction: Annotated[ str, Field(description="Sort direction: ASC or DESC"), ] = "DESC", ) -> dict: """Search PRIDE database for mass spectrometry proteomics projects using keywords and filters. Returns: dict: Results array with project accessions, titles, descriptions, organisms, instruments, experiment types, count, search_criteria or error message. """ base_url = "https://www.ebi.ac.uk/pride/ws/archive/v3/search/projects" # Build query parameters params: dict[str, str | int] = {} if page_size > 100: page_size = 100 params["pageSize"] = page_size params["page"] = 0 # Add keyword search if keyword: params["keyword"] = keyword # Build filter string for specific criteria filters = [] if organism_filter: filters.append(f"organisms=={organism_filter}") if instrument_filter: filters.append(f"instruments=={instrument_filter}") if experiment_type_filter: filters.append(f"experimentTypes=={experiment_type_filter}") if filters: params["filter"] = ",".join(filters) # Validate and set sort parameters - use only known working fields valid_sort_fields = ["submissionDate", "publicationDate"] if sort_field not in valid_sort_fields: sort_field = "submissionDate" params["sortFields"] = sort_field valid_sort_directions = ["ASC", "DESC"] if sort_direction.upper() not in valid_sort_directions: sort_direction = "DESC" params["sortDirection"] = sort_direction.upper() try: response = requests.get(base_url, params=params) response.raise_for_status() search_results = response.json() if not search_results: return { "results": [], "count": 0, "message": "No PRIDE projects found matching the search criteria", "search_criteria": { "keyword": keyword, "organism_filter": organism_filter, "instrument_filter": instrument_filter, "experiment_type_filter": experiment_type_filter, "sort_field": sort_field, "sort_direction": sort_direction, }, } # Process results to include key information processed_results = [] for project in search_results: processed_project = { "accession": project.get("accession"), "title": project.get("title"), "description": project.get("projectDescription", "")[:500] + "..." if len(project.get("projectDescription", "")) > 500 else project.get("projectDescription", ""), "submission_date": project.get("submissionDate"), "publication_date": project.get("publicationDate"), "organisms": project.get("organisms", []), "instruments": project.get("instruments", []), "experiment_types": project.get("experimentTypes", []), "keywords": project.get("keywords", []), "submitters": project.get("submitters", []), "download_count": project.get("downloadCount", 0), } processed_results.append(processed_project) return { "results": processed_results, "count": len(processed_results), "search_criteria": { "keyword": keyword, "organism_filter": organism_filter, "instrument_filter": instrument_filter, "experiment_type_filter": experiment_type_filter, "sort_field": sort_field, "sort_direction": sort_direction, }, } except requests.exceptions.HTTPError as e: return {"error": f"HTTP error: {e}"} except Exception as e: return {"error": f"Exception occurred: {e!s}"}
  • Imports the search_pride_projects function, allowing it to be discovered and the decorator to register it when the pride module is imported by the MCP server.
    from ._search_pride_projects import search_pride_projects
  • Input schema defined using Annotated types and Pydantic Field for descriptions, used by FastMCP for tool input validation.
    def search_pride_projects( keyword: Annotated[ Optional[str], Field(description="Search keywords (e.g., 'proteome', 'cancer', 'human')"), ] = None, organism_filter: Annotated[ Optional[str], Field(description="Organism filter (e.g., 'Homo sapiens', 'human')"), ] = None, instrument_filter: Annotated[ Optional[str], Field(description="Instrument type filter (e.g., 'Orbitrap', 'LTQ')"), ] = None, experiment_type_filter: Annotated[ Optional[str], Field(description="Experiment type filter (e.g., 'TMT', 'Label-free')"), ] = None, page_size: Annotated[ int, Field(description="Number of results to return (max 100)"), ] = 20, sort_field: Annotated[ str, Field(description="Sort field: submissionDate or publicationDate"), ] = "submissionDate", sort_direction: Annotated[ str, Field(description="Sort direction: ASC or DESC"), ] = "DESC", ) -> dict:

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/biocontext-ai/knowledgebase-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server