Skip to main content
Glama
biocontext-ai

BioContextAI Knowledgebase MCP

Official

bc_get_studies_by_condition

Search clinical trials by medical condition to find studies with breakdowns by status, study type, and phase for research planning.

Instructions

Search trials by condition with summary statistics. Returns paginated results with breakdowns by status, study type, and phase.

Returns: dict: Studies list with summary containing condition searched, total studies, status/study type/phase breakdowns or error message.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
conditionYesMedical condition/disease (e.g., 'cancer', 'diabetes')
statusNo'RECRUITING', 'ACTIVE_NOT_RECRUITING', 'COMPLETED', or 'ALL'ALL
study_typeNo'INTERVENTIONAL', 'OBSERVATIONAL', or 'ALL'ALL
location_countryNoCountry filter (e.g., 'United States')
page_sizeNoResults per page (1-1000)
sortNo'LastUpdatePostDate:desc', 'StudyFirstPostDate:desc', or 'EnrollmentCount:desc'LastUpdatePostDate:desc

Implementation Reference

  • Handler function for the bc_get_studies_by_condition tool. Decorated with @core_mcp.tool(), queries ClinicalTrials.gov API for studies matching the condition, with optional filters for status, type, location, pagination, and sorting. Returns studies with summary breakdowns.
    @core_mcp.tool() def get_studies_by_condition( condition: Annotated[str, Field(description="Medical condition/disease (e.g., 'cancer', 'diabetes')")], status: Annotated[ Optional[str], Field(description="'RECRUITING', 'ACTIVE_NOT_RECRUITING', 'COMPLETED', or 'ALL'"), ] = "ALL", study_type: Annotated[Optional[str], Field(description="'INTERVENTIONAL', 'OBSERVATIONAL', or 'ALL'")] = "ALL", location_country: Annotated[Optional[str], Field(description="Country filter (e.g., 'United States')")] = None, page_size: Annotated[int, Field(description="Results per page (1-1000)", ge=1, le=1000)] = 50, sort: Annotated[ str, Field(description="'LastUpdatePostDate:desc', 'StudyFirstPostDate:desc', or 'EnrollmentCount:desc'"), ] = "LastUpdatePostDate:desc", ) -> Union[Dict[str, Any], dict]: """Search trials by condition with summary statistics. Returns paginated results with breakdowns by status, study type, and phase. Returns: dict: Studies list with summary containing condition searched, total studies, status/study type/phase breakdowns or error message. """ if not condition: return {"error": "Medical condition must be provided"} # Build query components query_parts = [f"AREA[ConditionSearch]{condition}"] if status and status != "ALL": query_parts.append(f"AREA[OverallStatus]{status}") if study_type and study_type != "ALL": query_parts.append(f"AREA[StudyType]{study_type}") if location_country: query_parts.append(f"AREA[LocationCountry]{location_country}") # Join query parts with AND query = " AND ".join(query_parts) url = f"https://clinicaltrials.gov/api/v2/studies?query.term={query}&pageSize={page_size}&sort={sort}&format=json" try: response = requests.get(url) response.raise_for_status() data = response.json() # Add summary statistics if "studies" in data: total_studies = data.get("totalCount", len(data["studies"])) # Count studies by status status_counts: dict[str, int] = {} study_type_counts: dict[str, int] = {} phase_counts: dict[str, int] = {} for study in data["studies"]: # Extract status status_module = study.get("protocolSection", {}).get("statusModule", {}) study_status = status_module.get("overallStatus", "Unknown") status_counts[study_status] = status_counts.get(study_status, 0) + 1 # Extract study type design_module = study.get("protocolSection", {}).get("designModule", {}) design_study_type = design_module.get("studyType", "Unknown") study_type_counts[design_study_type] = study_type_counts.get(design_study_type, 0) + 1 # Extract phase for interventional studies phases = design_module.get("phases", []) if phases: for phase in phases: phase_counts[phase] = phase_counts.get(phase, 0) + 1 else: phase_counts["N/A"] = phase_counts.get("N/A", 0) + 1 # Add summary to response data["summary"] = { "condition_searched": condition, "total_studies": total_studies, "studies_returned": len(data["studies"]), "status_breakdown": status_counts, "study_type_breakdown": study_type_counts, "phase_breakdown": phase_counts, } return data except requests.exceptions.RequestException as e: return {"error": f"Failed to fetch studies by condition: {e!s}"}

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/biocontext-ai/knowledgebase-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server