Skip to main content
Glama
biocontext-ai

BioContextAI Knowledgebase MCP

Official

bc_search_drugs_fda

Search FDA-approved drugs using criteria like brand name, generic name, active ingredient, sponsor, or application number. Retrieve results from the FDA Drugs@FDA database with options to filter, sort, and paginate.

Instructions

Search the FDA Drugs@FDA database for approved drug products.

This function searches for FDA-approved drugs based on various criteria including brand names, generic names, active ingredients, sponsors, and regulatory information.

Args: brand_name (str, optional): Brand or trade name of the drug. generic_name (str, optional): Generic name of the drug. active_ingredient (str, optional): Active ingredient name. sponsor_name (str, optional): Company or sponsor name. application_number (str, optional): FDA application number (NDA, ANDA, or BLA). marketing_status (str, optional): Marketing status of the drug. dosage_form (str, optional): Dosage form of the drug. route (str, optional): Route of administration. search_type (str): How to combine search terms - "and" or "or". sort_by (str, optional): Field to sort results by. limit (int): Maximum number of results to return (1-1000). skip (int): Number of results to skip for pagination (0-25000).

Returns: dict: Search results from the FDA Drugs@FDA API.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
active_ingredientNoActive ingredient name
application_numberNoFDA application number (NDA, ANDA, or BLA)
brand_nameNoBrand or trade name of the drug (e.g., 'Tylenol')
dosage_formNoDosage form (e.g., 'TABLET', 'INJECTION', 'CAPSULE')
generic_nameNoGeneric name of the drug (e.g., 'acetaminophen')
limitNoNumber of results to return
marketing_statusNoMarketing status: 'Prescription', 'Over-the-counter', 'Discontinued', or 'None (Tentative Approval)'
routeNoRoute of administration (e.g., 'ORAL', 'INJECTION', 'TOPICAL')
search_typeNoSearch type: 'and' for all terms must match, 'or' for any term matchesor
skipNoNumber of results to skip for pagination
sort_byNoSort by field (e.g., 'sponsor_name', 'application_number')
sponsor_nameNoCompany/sponsor name

Implementation Reference

  • The core handler function search_drugs_fda decorated with @core_mcp.tool(), implementing the logic to search FDA Drugs@FDA API. This becomes the 'bc_search_drugs_fda' tool due to the 'BC' prefix on core_mcp.
    @core_mcp.tool() def search_drugs_fda( brand_name: Annotated[Optional[str], Field(description="Brand or trade name (e.g., 'Tylenol')")] = None, generic_name: Annotated[Optional[str], Field(description="Generic name (e.g., 'acetaminophen')")] = None, active_ingredient: Annotated[Optional[str], Field(description="Active ingredient name")] = None, sponsor_name: Annotated[Optional[str], Field(description="Company/sponsor name")] = None, application_number: Annotated[ Optional[str], Field(description="FDA application number (NDA, ANDA, or BLA)") ] = None, marketing_status: Annotated[ Optional[str], Field( description="Marketing status: 'Prescription', 'Over-the-counter', 'Discontinued', or 'None (Tentative Approval)'" ), ] = None, dosage_form: Annotated[ Optional[str], Field(description="Dosage form (e.g., 'TABLET', 'INJECTION', 'CAPSULE')") ] = None, route: Annotated[ Optional[str], Field(description="Route of administration (e.g., 'ORAL', 'INJECTION', 'TOPICAL')") ] = None, search_type: Annotated[str, Field(description="'and' for all terms must match, 'or' for any term matches")] = "or", sort_by: Annotated[ Optional[str], Field(description="Field to sort by (e.g., 'sponsor_name', 'application_number')") ] = None, limit: Annotated[int, Field(description="Number of results to return", ge=1, le=1000)] = 25, skip: Annotated[int, Field(description="Number of results to skip for pagination", ge=0, le=25000)] = 0, ) -> dict: """Search FDA Drugs@FDA database for approved drug products. Supports multiple search criteria. Returns: dict: Results array with drug products including application numbers, sponsors, products array or error message. """ # Ensure at least one search parameter is provided search_params = [ brand_name, generic_name, active_ingredient, sponsor_name, application_number, marketing_status, dosage_form, route, ] if not any(search_params): return {"error": "At least one search parameter must be provided"} # Build query components - using correct schema field paths query_parts = [] if brand_name: # Search in both openfda.brand_name and products.brand_name arrays query_parts.append(f"(openfda.brand_name:{brand_name} OR products.brand_name:{brand_name})") if generic_name: # openfda.generic_name is an array query_parts.append(f"openfda.generic_name:{generic_name}") if active_ingredient: # products.active_ingredients.name query_parts.append(f"products.active_ingredients.name:{active_ingredient}") if sponsor_name: query_parts.append(f"sponsor_name:{sponsor_name}") if application_number: query_parts.append(f"application_number.exact:{application_number}") if marketing_status: # Map user-friendly terms to API values - products.marketing_status status_mapping = { "prescription": "1", "discontinued": "2", "none (tentative approval)": "3", "over-the-counter": "4", } status_value = status_mapping.get(marketing_status.lower(), marketing_status) query_parts.append(f"products.marketing_status:{status_value}") if dosage_form: query_parts.append(f"products.dosage_form:{dosage_form}") if route: query_parts.append(f"products.route:{route}") # Join query parts based on search type query = " AND ".join(query_parts) if search_type.lower() == "and" else " OR ".join(query_parts) # Build URL parameters for proper encoding params = {"search": query, "limit": limit, "skip": skip} # Add sorting if specified if sort_by: params["sort"] = f"{sort_by}:desc" # Build the complete URL base_url = "https://api.fda.gov/drug/drugsfda.json" try: response = requests.get(base_url, params=params) # type: ignore response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: return {"error": f"Failed to fetch FDA drug data: {e!s}"}
  • Explicit import of the search_drugs_fda handler in the openfda package __init__.py, which triggers registration of the tool when imported.
    from ._search_drugs import search_drugs_fda
  • Imports all functions from openfda package, including search_drugs_fda, into the core namespace, making the tool available in core_mcp.
    from .openfda import *
  • Definition of core_mcp FastMCP server with name 'BC', which prefixes tool names with 'bc_'.
    core_mcp = FastMCP( # type: ignore "BC", instructions="Provides access to biomedical knowledge bases.", )

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/biocontext-ai/knowledgebase-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server