neptune_analytics_example.py•4.33 kB
import base64
import json
import os
import pathlib
import asyncio
import cognee
from cognee.modules.search.types import SearchType
from dotenv import load_dotenv
load_dotenv()
async def main():
"""
Example script demonstrating how to use Cognee with Amazon Neptune Analytics
This example:
1. Configures Cognee to use Neptune Analytics as graph database
2. Sets up data directories
3. Adds sample data to Cognee
4. Processes/cognifies the data
5. Performs different types of searches
"""
# Set up Amazon credentials in .env file and get the values from environment variables
graph_endpoint_url = "neptune-graph://" + os.getenv("GRAPH_ID", "")
# Configure Neptune Analytics as the graph & vector database provider
cognee.config.set_graph_db_config(
{
"graph_database_provider": "neptune_analytics", # Specify Neptune Analytics as provider
"graph_database_url": graph_endpoint_url, # Neptune Analytics endpoint with the format neptune-graph://<GRAPH_ID>
}
)
cognee.config.set_vector_db_config(
{
"vector_db_provider": "neptune_analytics", # Specify Neptune Analytics as provider
"vector_db_url": graph_endpoint_url, # Neptune Analytics endpoint with the format neptune-graph://<GRAPH_ID>
}
)
# Set up data directories for storing documents and system files
# You should adjust these paths to your needs
current_dir = pathlib.Path(__file__).parent
data_directory_path = str(current_dir / "data_storage")
cognee.config.data_root_directory(data_directory_path)
cognee_directory_path = str(current_dir / "cognee_system")
cognee.config.system_root_directory(cognee_directory_path)
# Clean any existing data (optional)
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Create a dataset
dataset_name = "neptune_example"
# Add sample text to the dataset
sample_text_1 = """Neptune Analytics is a memory-optimized graph database engine for analytics. With Neptune
Analytics, you can get insights and find trends by processing large amounts of graph data in seconds. To analyze
graph data quickly and easily, Neptune Analytics stores large graph datasets in memory. It supports a library of
optimized graph analytic algorithms, low-latency graph queries, and vector search capabilities within graph
traversals.
"""
sample_text_2 = """Neptune Analytics is an ideal choice for investigatory, exploratory, or data-science workloads
that require fast iteration for data, analytical and algorithmic processing, or vector search on graph data. It
complements Amazon Neptune Database, a popular managed graph database. To perform intensive analysis, you can load
the data from a Neptune Database graph or snapshot into Neptune Analytics. You can also load graph data that's
stored in Amazon S3.
"""
# Add the sample text to the dataset
await cognee.add([sample_text_1, sample_text_2], dataset_name)
# Process the added document to extract knowledge
await cognee.cognify([dataset_name])
# Now let's perform some searches
# 1. Search for insights related to "Neptune Analytics"
insights_results = await cognee.search(
query_type=SearchType.INSIGHTS, query_text="Neptune Analytics"
)
print("\n========Insights about Neptune Analytics========:")
for result in insights_results:
print(f"- {result}")
# 2. Search for text chunks related to "graph database"
chunks_results = await cognee.search(
query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name]
)
print("\n========Chunks about graph database========:")
for result in chunks_results:
print(f"- {result}")
# 3. Get graph completion related to databases
graph_completion_results = await cognee.search(
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
)
print("\n========Graph completion for databases========:")
for result in graph_completion_results:
print(f"- {result}")
# Clean up (optional)
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
if __name__ == "__main__":
asyncio.run(main())