Skip to main content
Glama

cognee-mcp

chromadb_example.py3.31 kB
import os import pathlib import asyncio import cognee from cognee.modules.search.types import SearchType async def main(): """ Example script demonstrating how to use Cognee with ChromaDB This example: 1. Configures Cognee to use ChromaDB as vector database 2. Sets up data directories 3. Adds sample data to Cognee 4. Processes (cognifies) the data 5. Performs different types of searches """ # Configure ChromaDB as the vector database provider cognee.config.set_vector_db_config( { "vector_db_url": "http://localhost:8000", # Default ChromaDB server URL "vector_db_key": "", # ChromaDB doesn't require an API key by default "vector_db_provider": "chromadb", # Specify ChromaDB as provider } ) # Set up data directories for storing documents and system files # You should adjust these paths to your needs current_dir = pathlib.Path(__file__).parent data_directory_path = str(current_dir / "data_storage") cognee.config.data_root_directory(data_directory_path) cognee_directory_path = str(current_dir / "cognee_system") cognee.config.system_root_directory(cognee_directory_path) # Clean any existing data (optional) await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) # Create a dataset dataset_name = "chromadb_example" # Add sample text to the dataset sample_text = """ChromaDB is an open-source embedding database. It allows users to store and query embeddings and their associated metadata. ChromaDB can be deployed in various ways: in-memory, on disk via sqlite, or as a persistent service. It is designed to be fast, scalable, and easy to use, making it a popular choice for AI applications. The database is built to handle vector search efficiently, which is essential for semantic search applications. ChromaDB supports multiple distance metrics for vector similarity search and can be integrated with various ML frameworks.""" # Add the sample text to the dataset await cognee.add([sample_text], dataset_name) # Process the added document to extract knowledge await cognee.cognify([dataset_name]) # Now let's perform some searches # 1. Search for insights related to "ChromaDB" insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="ChromaDB") print("\nInsights about ChromaDB:") for result in insights_results: print(f"- {result}") # 2. Search for text chunks related to "vector search" chunks_results = await cognee.search( query_type=SearchType.CHUNKS, query_text="vector search", datasets=[dataset_name] ) print("\nChunks about vector search:") for result in chunks_results: print(f"- {result}") # 3. Get graph completion related to databases graph_completion_results = await cognee.search( query_type=SearchType.GRAPH_COMPLETION, query_text="database" ) print("\nGraph completion for databases:") for result in graph_completion_results: print(f"- {result}") # Clean up (optional) # await cognee.prune.prune_data() # await cognee.prune.prune_system(metadata=True) if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server