Skip to main content
Glama

cognee-mcp

kuzu_example.py3.03 kB
import os import pathlib import asyncio import cognee from cognee.modules.search.types import SearchType async def main(): """ Example script demonstrating how to use Cognee with KuzuDB This example: 1. Configures Cognee to use KuzuDB as graph database 2. Sets up data directories 3. Adds sample data to Cognee 4. Processes (cognifies) the data 5. Performs different types of searches """ # Configure KuzuDB as the graph database provider cognee.config.set_graph_db_config( { "graph_database_provider": "kuzu", # Specify KuzuDB as provider } ) # Set up data directories for storing documents and system files # You should adjust these paths to your needs current_dir = pathlib.Path(__file__).parent data_directory_path = str(current_dir / "data_storage") cognee.config.data_root_directory(data_directory_path) cognee_directory_path = str(current_dir / "cognee_system") cognee.config.system_root_directory(cognee_directory_path) # Clean any existing data (optional) await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) # Create a dataset dataset_name = "kuzu_example" # Add sample text to the dataset sample_text = """KuzuDB is a graph database system optimized for running complex graph analytics. It is designed to be a high-performance graph database for data science workloads. KuzuDB is built with modern hardware optimizations in mind. It provides support for property graphs and offers a Cypher-like query language. KuzuDB can handle both transactional and analytical graph workloads. The database now includes vector search capabilities for AI applications and semantic search.""" # Add the sample text to the dataset await cognee.add([sample_text], dataset_name) # Process the added document to extract knowledge await cognee.cognify([dataset_name]) # Now let's perform some searches # 1. Search for insights related to "KuzuDB" insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="KuzuDB") print("\nInsights about KuzuDB:") for result in insights_results: print(f"- {result}") # 2. Search for text chunks related to "graph database" chunks_results = await cognee.search( query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name] ) print("\nChunks about graph database:") for result in chunks_results: print(f"- {result}") # 3. Get graph completion related to databases graph_completion_results = await cognee.search( query_type=SearchType.GRAPH_COMPLETION, query_text="database" ) print("\nGraph completion for databases:") for result in graph_completion_results: print(f"- {result}") # Clean up (optional) # await cognee.prune.prune_data() # await cognee.prune.prune_system(metadata=True) if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server