Skip to main content
Glama

cognee-mcp

neo4j_example.py3.51 kB
import os import pathlib import asyncio import cognee from cognee.modules.search.types import SearchType async def main(): """ Example script demonstrating how to use Cognee with Neo4j This example: 1. Configures Cognee to use Neo4j as graph database 2. Sets up data directories 3. Adds sample data to Cognee 4. Processes (cognifies) the data 5. Performs different types of searches """ # Set up Neo4j credentials in .env file and get the values from environment variables neo4j_url = os.getenv("GRAPH_DATABASE_URL") neo4j_user = os.getenv("GRAPH_DATABASE_USERNAME") neo4j_pass = os.getenv("GRAPH_DATABASE_PASSWORD") # Configure Neo4j as the graph database provider cognee.config.set_graph_db_config( { "graph_database_url": neo4j_url, # Neo4j Bolt URL "graph_database_provider": "neo4j", # Specify Neo4j as provider "graph_database_username": neo4j_user, # Neo4j username "graph_database_password": neo4j_pass, # Neo4j password } ) # Set up data directories for storing documents and system files # You should adjust these paths to your needs current_dir = pathlib.Path(__file__).parent data_directory_path = str(current_dir / "data_storage") cognee.config.data_root_directory(data_directory_path) cognee_directory_path = str(current_dir / "cognee_system") cognee.config.system_root_directory(cognee_directory_path) # Clean any existing data (optional) await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) # Create a dataset dataset_name = "neo4j_example" # Add sample text to the dataset sample_text = """Neo4j is a graph database management system. It stores data in nodes and relationships rather than tables as in traditional relational databases. Neo4j provides a powerful query language called Cypher for graph traversal and analysis. It now supports vector indexing for similarity search with the vector index plugin. Neo4j allows embedding generation and vector search to be combined with graph operations. Applications can use Neo4j to connect vector search with graph context for more meaningful results.""" # Add the sample text to the dataset await cognee.add([sample_text], dataset_name) # Process the added document to extract knowledge await cognee.cognify([dataset_name]) # Now let's perform some searches # 1. Search for insights related to "Neo4j" insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="Neo4j") print("\nInsights about Neo4j:") for result in insights_results: print(f"- {result}") # 2. Search for text chunks related to "graph database" chunks_results = await cognee.search( query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name] ) print("\nChunks about graph database:") for result in chunks_results: print(f"- {result}") # 3. Get graph completion related to databases graph_completion_results = await cognee.search( query_type=SearchType.GRAPH_COMPLETION, query_text="database" ) print("\nGraph completion for databases:") for result in graph_completion_results: print(f"- {result}") # Clean up (optional) # await cognee.prune.prune_data() # await cognee.prune.prune_system(metadata=True) if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server