LinkedIn 个人资料分析器 MCP
一个强大的 LinkedIn 个人资料分析器 MCP(机器控制协议)服务器,可与 LinkedIn 的 API 交互,以获取、分析和管理 LinkedIn 帖子数据。此 MCP 专为与 Claude AI 配合使用而设计。
特征
获取并存储任何公开个人资料的 LinkedIn 帖子
使用关键字过滤搜索帖子
根据参与度指标获取表现最佳的帖子
按日期范围过滤帖子
分页访问存储的帖子
轻松与 Claude AI 集成
Related MCP server: LinkedIn Model Context Protocol (MCP) Server
先决条件
Python 3.7+
LinkedIn 数据 API 的 RapidAPI 密钥
克劳德人工智能访问
入门
1. 获取 RapidAPI 密钥
注册或登录 RapidAPI
订阅 LinkedIn 数据 API
从仪表板复制您的 RapidAPI 密钥
2.安装
克隆存储库:
安装依赖项:
设置环境变量:
创建
.env文件添加您的 RapidAPI 密钥:
项目结构
MCP 配置
mcp.json文件配置 LinkedIn MCP 服务器:
确保更新args中的路径以匹配您的本地文件位置。
可用工具
1. 获取并保存 LinkedIn 帖子
获取给定用户名的 LinkedIn 帖子并将其保存在本地。
2. 获取已保存的帖子
检索具有分页支持的已保存帖子。
3. 搜索帖子
搜索特定关键词的帖子。
4. 获取热门帖子
根据参与度指标返回表现最佳的帖子。
5. 按日期获取帖子
过滤指定日期范围内的帖子。
与 Claude 一起使用
在与 Claude 的对话中初始化 MCP 服务器
通过自然语言命令使用可用的工具
Claude 将帮助您使用这些工具与 LinkedIn 数据进行交互
API 集成
该项目使用 LinkedIn 数据 API 的以下端点:
GET /get-profile-posts:从 LinkedIn 个人资料中获取帖子基本网址:
https://linkedin-data-api.p.rapidapi.com必需的标头:
x-rapidapi-key:您的 RapidAPI 密钥x-rapidapi-host:linkedin-data-api.p.rapidapi.com
贡献
分叉存储库
创建你的功能分支(
git checkout -b feature/amazing-feature)提交您的更改(
git commit -m 'Add amazing feature')推送到分支(
git push origin feature/amazing-feature)打开拉取请求
执照
该项目根据 MIT 许可证获得许可 - 有关详细信息,请参阅 LICENSE 文件。
作者
存储库
致谢
RapidAPI,提供 LinkedIn 数据访问
人类学为克劳德的人工智能能力