Skip to main content
Glama

MCP Template Server

A template server implementing the Model Context Protocol (MCP) with OpenAI, Anthropic, and EnrichB2B integration.

Setup

  1. Create a virtual environment:

python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
  1. Install dependencies:

pip install -r requirements.txt
  1. Set up environment variables:

cp .env.example .env # Edit .env with your API keys and configuration

Running the Server

Development mode:

python server.py

Or using MCP CLI:

mcp dev server.py

Features

  • OpenAI GPT-4 integration

  • Anthropic Claude integration

  • EnrichB2B LinkedIn data integration

  • FastAPI and Uvicorn server

  • Environment configuration

  • Example resources and tools

  • Structured project layout

Project Structure

. ├── .env.example # Template for environment variables ├── .gitignore # Git ignore rules ├── README.md # This file ├── requirements.txt # Python dependencies ├── enrichb2b.py # EnrichB2B API client └── server.py # MCP server implementation

Usage

  1. Start the server

  2. Connect using any MCP client

  3. Use the provided tools and resources:

    • config://app - Get server configuration

    • get_profile_details - Get LinkedIn profile information

    • get_contact_activities - Get LinkedIn user's recent activities and posts

    • gpt4_completion - Generate text using GPT-4

    • claude_completion - Generate text using Claude

    • analysis_prompt - Template for text analysis

EnrichB2B Tools

get_profile_details

Get detailed information about a LinkedIn profile:

result = await get_profile_details( linkedin_url="https://www.linkedin.com/in/username", include_company_details=True, include_followers_count=True )

get_contact_activities

Get recent activities and posts from a LinkedIn profile:

result = await get_contact_activities( linkedin_url="https://www.linkedin.com/in/username", pages=1, # Number of pages (1-50) comments_per_post=1, # Comments per post (0-50) likes_per_post=None # Likes per post (0-50) )

Development

To add new features:

  1. Add new tools using the @mcp.tool() decorator

  2. Add new resources using the @mcp.resource() decorator

  3. Add new prompts using the @mcp.prompt() decorator

License

MIT

-
security - not tested
F
license - not found
-
quality - not tested

Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    A Model Context Protocol server that enables seamless interaction with LinkedIn for job applications, profile retrieval, feed browsing, and resume analysis through natural language commands.
    Last updated -
    25
  • A
    security
    A
    license
    A
    quality
    Enables AI assistants to interact with LinkedIn data through the Model Context Protocol, allowing profile searches, job discovery, messaging, and network analytics.
    Last updated -
    31
    28
    38
    28
    MIT License
    • Apple
  • A
    security
    F
    license
    A
    quality
    An unofficial Model Context Protocol server that enables programmatic access to LinkedIn data through tools like user search, company search, profile enrichment, and contact retrieval.
    Last updated -
    7
    15
    3
  • -
    security
    F
    license
    -
    quality
    A comprehensive Model Context Protocol server that enables AI assistants to interact with LinkedIn APIs for profile management, content creation, networking, messaging, and analytics.
    Last updated -
    1

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/moonlabsai/enrich_b2b_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server