Skip to main content
Glama

mcp-run-python

Official
by pydantic
ollama.py4.73 kB
from __future__ import annotations as _annotations import os import httpx from openai import AsyncOpenAI from pydantic_ai import ModelProfile from pydantic_ai.exceptions import UserError from pydantic_ai.models import cached_async_http_client from pydantic_ai.profiles.cohere import cohere_model_profile from pydantic_ai.profiles.deepseek import deepseek_model_profile from pydantic_ai.profiles.google import google_model_profile from pydantic_ai.profiles.harmony import harmony_model_profile from pydantic_ai.profiles.meta import meta_model_profile from pydantic_ai.profiles.mistral import mistral_model_profile from pydantic_ai.profiles.openai import OpenAIJsonSchemaTransformer, OpenAIModelProfile from pydantic_ai.profiles.qwen import qwen_model_profile from pydantic_ai.providers import Provider try: from openai import AsyncOpenAI except ImportError as _import_error: # pragma: no cover raise ImportError( 'Please install the `openai` package to use the Ollama provider, ' 'you can use the `openai` optional group — `pip install "pydantic-ai-slim[openai]"`' ) from _import_error class OllamaProvider(Provider[AsyncOpenAI]): """Provider for local or remote Ollama API.""" @property def name(self) -> str: return 'ollama' @property def base_url(self) -> str: return str(self.client.base_url) @property def client(self) -> AsyncOpenAI: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: prefix_to_profile = { 'llama': meta_model_profile, 'gemma': google_model_profile, 'qwen': qwen_model_profile, 'qwq': qwen_model_profile, 'deepseek': deepseek_model_profile, 'mistral': mistral_model_profile, 'command': cohere_model_profile, 'gpt-oss': harmony_model_profile, } profile = None for prefix, profile_func in prefix_to_profile.items(): model_name = model_name.lower() if model_name.startswith(prefix): profile = profile_func(model_name) # As OllamaProvider is always used with OpenAIChatModel, which used to unconditionally use OpenAIJsonSchemaTransformer, # we need to maintain that behavior unless json_schema_transformer is set explicitly return OpenAIModelProfile(json_schema_transformer=OpenAIJsonSchemaTransformer).update(profile) def __init__( self, base_url: str | None = None, api_key: str | None = None, openai_client: AsyncOpenAI | None = None, http_client: httpx.AsyncClient | None = None, ) -> None: """Create a new Ollama provider. Args: base_url: The base url for the Ollama requests. If not provided, the `OLLAMA_BASE_URL` environment variable will be used if available. api_key: The API key to use for authentication, if not provided, the `OLLAMA_API_KEY` environment variable will be used if available. openai_client: An existing [`AsyncOpenAI`](https://github.com/openai/openai-python?tab=readme-ov-file#async-usage) client to use. If provided, `base_url`, `api_key`, and `http_client` must be `None`. http_client: An existing `httpx.AsyncClient` to use for making HTTP requests. """ if openai_client is not None: assert base_url is None, 'Cannot provide both `openai_client` and `base_url`' assert http_client is None, 'Cannot provide both `openai_client` and `http_client`' assert api_key is None, 'Cannot provide both `openai_client` and `api_key`' self._client = openai_client else: base_url = base_url or os.getenv('OLLAMA_BASE_URL') if not base_url: raise UserError( 'Set the `OLLAMA_BASE_URL` environment variable or pass it via `OllamaProvider(base_url=...)`' 'to use the Ollama provider.' ) # This is a workaround for the OpenAI client requiring an API key, whilst locally served, # openai compatible models do not always need an API key, but a placeholder (non-empty) key is required. api_key = api_key or os.getenv('OLLAMA_API_KEY') or 'api-key-not-set' if http_client is not None: self._client = AsyncOpenAI(base_url=base_url, api_key=api_key, http_client=http_client) else: http_client = cached_async_http_client(provider='ollama') self._client = AsyncOpenAI(base_url=base_url, api_key=api_key, http_client=http_client)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server