Skip to main content
Glama

mcp-run-python

Official
by pydantic
azure.py5.81 kB
from __future__ import annotations as _annotations import os from typing import overload import httpx from openai import AsyncOpenAI from pydantic_ai import ModelProfile from pydantic_ai.exceptions import UserError from pydantic_ai.models import cached_async_http_client from pydantic_ai.profiles.cohere import cohere_model_profile from pydantic_ai.profiles.deepseek import deepseek_model_profile from pydantic_ai.profiles.grok import grok_model_profile from pydantic_ai.profiles.meta import meta_model_profile from pydantic_ai.profiles.mistral import mistral_model_profile from pydantic_ai.profiles.openai import OpenAIJsonSchemaTransformer, OpenAIModelProfile, openai_model_profile from pydantic_ai.providers import Provider try: from openai import AsyncAzureOpenAI except ImportError as _import_error: # pragma: no cover raise ImportError( 'Please install the `openai` package to use the Azure provider, ' 'you can use the `openai` optional group — `pip install "pydantic-ai-slim[openai]"`' ) from _import_error class AzureProvider(Provider[AsyncOpenAI]): """Provider for Azure OpenAI API. See <https://azure.microsoft.com/en-us/products/ai-foundry> for more information. """ @property def name(self) -> str: return 'azure' @property def base_url(self) -> str: assert self._base_url is not None return self._base_url @property def client(self) -> AsyncOpenAI: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: model_name = model_name.lower() prefix_to_profile = { 'llama': meta_model_profile, 'meta-': meta_model_profile, 'deepseek': deepseek_model_profile, 'mistralai-': mistral_model_profile, 'mistral': mistral_model_profile, 'cohere-': cohere_model_profile, 'grok': grok_model_profile, } for prefix, profile_func in prefix_to_profile.items(): if model_name.startswith(prefix): if prefix.endswith('-'): model_name = model_name[len(prefix) :] profile = profile_func(model_name) # As AzureProvider is always used with OpenAIChatModel, which used to unconditionally use OpenAIJsonSchemaTransformer, # we need to maintain that behavior unless json_schema_transformer is set explicitly return OpenAIModelProfile(json_schema_transformer=OpenAIJsonSchemaTransformer).update(profile) # OpenAI models are unprefixed return openai_model_profile(model_name) @overload def __init__(self, *, openai_client: AsyncAzureOpenAI) -> None: ... @overload def __init__( self, *, azure_endpoint: str | None = None, api_version: str | None = None, api_key: str | None = None, http_client: httpx.AsyncClient | None = None, ) -> None: ... def __init__( self, *, azure_endpoint: str | None = None, api_version: str | None = None, api_key: str | None = None, openai_client: AsyncAzureOpenAI | None = None, http_client: httpx.AsyncClient | None = None, ) -> None: """Create a new Azure provider. Args: azure_endpoint: The Azure endpoint to use for authentication, if not provided, the `AZURE_OPENAI_ENDPOINT` environment variable will be used if available. api_version: The API version to use for authentication, if not provided, the `OPENAI_API_VERSION` environment variable will be used if available. api_key: The API key to use for authentication, if not provided, the `AZURE_OPENAI_API_KEY` environment variable will be used if available. openai_client: An existing [`AsyncAzureOpenAI`](https://github.com/openai/openai-python#microsoft-azure-openai) client to use. If provided, `base_url`, `api_key`, and `http_client` must be `None`. http_client: An existing `httpx.AsyncClient` to use for making HTTP requests. """ if openai_client is not None: assert azure_endpoint is None, 'Cannot provide both `openai_client` and `azure_endpoint`' assert http_client is None, 'Cannot provide both `openai_client` and `http_client`' assert api_key is None, 'Cannot provide both `openai_client` and `api_key`' self._base_url = str(openai_client.base_url) self._client = openai_client else: azure_endpoint = azure_endpoint or os.getenv('AZURE_OPENAI_ENDPOINT') if not azure_endpoint: raise UserError( 'Must provide one of the `azure_endpoint` argument or the `AZURE_OPENAI_ENDPOINT` environment variable' ) if not api_key and 'AZURE_OPENAI_API_KEY' not in os.environ: # pragma: no cover raise UserError( 'Must provide one of the `api_key` argument or the `AZURE_OPENAI_API_KEY` environment variable' ) if not api_version and 'OPENAI_API_VERSION' not in os.environ: # pragma: no cover raise UserError( 'Must provide one of the `api_version` argument or the `OPENAI_API_VERSION` environment variable' ) http_client = http_client or cached_async_http_client(provider='azure') self._client = AsyncAzureOpenAI( azure_endpoint=azure_endpoint, api_key=api_key, api_version=api_version, http_client=http_client, ) self._base_url = str(self._client.base_url)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server