Skip to main content
Glama

mcp-run-python

Official
by pydantic
huggingface.py4.9 kB
from __future__ import annotations as _annotations import os from typing import overload from httpx import AsyncClient from pydantic_ai import ModelProfile from pydantic_ai.exceptions import UserError from pydantic_ai.profiles.deepseek import deepseek_model_profile from pydantic_ai.profiles.google import google_model_profile from pydantic_ai.profiles.meta import meta_model_profile from pydantic_ai.profiles.mistral import mistral_model_profile from pydantic_ai.profiles.moonshotai import moonshotai_model_profile from pydantic_ai.profiles.qwen import qwen_model_profile try: from huggingface_hub import AsyncInferenceClient except ImportError as _import_error: # pragma: no cover raise ImportError( 'Please install the `huggingface_hub` package to use the HuggingFace provider, ' "you can use the `huggingface` optional group — `pip install 'pydantic-ai-slim[huggingface]'`" ) from _import_error from . import Provider class HuggingFaceProvider(Provider[AsyncInferenceClient]): """Provider for Hugging Face.""" @property def name(self) -> str: return 'huggingface' @property def base_url(self) -> str: return self.client.model # type: ignore @property def client(self) -> AsyncInferenceClient: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: provider_to_profile = { 'deepseek-ai': deepseek_model_profile, 'google': google_model_profile, 'qwen': qwen_model_profile, 'meta-llama': meta_model_profile, 'mistralai': mistral_model_profile, 'moonshotai': moonshotai_model_profile, } if '/' not in model_name: return None model_name = model_name.lower() provider, model_name = model_name.split('/', 1) if provider in provider_to_profile: return provider_to_profile[provider](model_name) return None @overload def __init__(self, *, base_url: str, api_key: str | None = None) -> None: ... @overload def __init__(self, *, provider_name: str, api_key: str | None = None) -> None: ... @overload def __init__(self, *, hf_client: AsyncInferenceClient, api_key: str | None = None) -> None: ... @overload def __init__(self, *, hf_client: AsyncInferenceClient, base_url: str, api_key: str | None = None) -> None: ... @overload def __init__(self, *, hf_client: AsyncInferenceClient, provider_name: str, api_key: str | None = None) -> None: ... @overload def __init__(self, *, api_key: str | None = None) -> None: ... def __init__( self, base_url: str | None = None, api_key: str | None = None, hf_client: AsyncInferenceClient | None = None, http_client: AsyncClient | None = None, provider_name: str | None = None, ) -> None: """Create a new Hugging Face provider. Args: base_url: The base url for the Hugging Face requests. api_key: The API key to use for authentication, if not provided, the `HF_TOKEN` environment variable will be used if available. hf_client: An existing [`AsyncInferenceClient`](https://huggingface.co/docs/huggingface_hub/v0.29.3/en/package_reference/inference_client#huggingface_hub.AsyncInferenceClient) client to use. If not provided, a new instance will be created. http_client: (currently ignored) An existing `httpx.AsyncClient` to use for making HTTP requests. provider_name : Name of the provider to use for inference. available providers can be found in the [HF Inference Providers documentation](https://huggingface.co/docs/inference-providers/index#partners). defaults to "auto", which will select the first available provider for the model, the first of the providers available for the model, sorted by the user's order in https://hf.co/settings/inference-providers. If `base_url` is passed, then `provider_name` is not used. """ api_key = api_key or os.getenv('HF_TOKEN') if api_key is None: raise UserError( 'Set the `HF_TOKEN` environment variable or pass it via `HuggingFaceProvider(api_key=...)`' 'to use the HuggingFace provider.' ) if http_client is not None: raise ValueError('`http_client` is ignored for HuggingFace provider, please use `hf_client` instead.') if base_url is not None and provider_name is not None: raise ValueError('Cannot provide both `base_url` and `provider_name`.') if hf_client is None: self._client = AsyncInferenceClient(api_key=api_key, provider=provider_name, base_url=base_url) # type: ignore else: self._client = hf_client

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server