Skip to main content
Glama

mcp-run-python

Official
by pydantic
heroku.py2.94 kB
from __future__ import annotations as _annotations import os from typing import overload import httpx from openai import AsyncOpenAI from pydantic_ai import ModelProfile from pydantic_ai.exceptions import UserError from pydantic_ai.models import cached_async_http_client from pydantic_ai.profiles.openai import OpenAIJsonSchemaTransformer, OpenAIModelProfile from pydantic_ai.providers import Provider try: from openai import AsyncOpenAI except ImportError as _import_error: # pragma: no cover raise ImportError( 'Please install the `openai` package to use the Heroku provider, ' 'you can use the `openai` optional group — `pip install "pydantic-ai-slim[openai]"`' ) from _import_error class HerokuProvider(Provider[AsyncOpenAI]): """Provider for Heroku API.""" @property def name(self) -> str: return 'heroku' @property def base_url(self) -> str: return str(self.client.base_url) @property def client(self) -> AsyncOpenAI: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: # As the Heroku API is OpenAI-compatible, let's assume we also need OpenAIJsonSchemaTransformer. return OpenAIModelProfile(json_schema_transformer=OpenAIJsonSchemaTransformer) @overload def __init__(self) -> None: ... @overload def __init__(self, *, api_key: str) -> None: ... @overload def __init__(self, *, api_key: str, http_client: httpx.AsyncClient) -> None: ... @overload def __init__(self, *, openai_client: AsyncOpenAI | None = None) -> None: ... def __init__( self, *, base_url: str | None = None, api_key: str | None = None, openai_client: AsyncOpenAI | None = None, http_client: httpx.AsyncClient | None = None, ) -> None: if openai_client is not None: assert http_client is None, 'Cannot provide both `openai_client` and `http_client`' assert api_key is None, 'Cannot provide both `openai_client` and `api_key`' self._client = openai_client else: api_key = api_key or os.getenv('HEROKU_INFERENCE_KEY') if not api_key: raise UserError( 'Set the `HEROKU_INFERENCE_KEY` environment variable or pass it via `HerokuProvider(api_key=...)`' 'to use the Heroku provider.' ) base_url = base_url or os.getenv('HEROKU_INFERENCE_URL', 'https://us.inference.heroku.com') base_url = base_url.rstrip('/') + '/v1' if http_client is not None: self._client = AsyncOpenAI(api_key=api_key, http_client=http_client, base_url=base_url) else: http_client = cached_async_http_client(provider='heroku') self._client = AsyncOpenAI(api_key=api_key, http_client=http_client, base_url=base_url)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server