Skip to main content
Glama

mcp-run-python

Official
by pydantic
litellm.py5.07 kB
from __future__ import annotations as _annotations from typing import overload from httpx import AsyncClient as AsyncHTTPClient from openai import AsyncOpenAI from pydantic_ai import ModelProfile from pydantic_ai.models import cached_async_http_client from pydantic_ai.profiles.amazon import amazon_model_profile from pydantic_ai.profiles.anthropic import anthropic_model_profile from pydantic_ai.profiles.cohere import cohere_model_profile from pydantic_ai.profiles.deepseek import deepseek_model_profile from pydantic_ai.profiles.google import google_model_profile from pydantic_ai.profiles.grok import grok_model_profile from pydantic_ai.profiles.groq import groq_model_profile from pydantic_ai.profiles.meta import meta_model_profile from pydantic_ai.profiles.mistral import mistral_model_profile from pydantic_ai.profiles.moonshotai import moonshotai_model_profile from pydantic_ai.profiles.openai import OpenAIJsonSchemaTransformer, OpenAIModelProfile, openai_model_profile from pydantic_ai.profiles.qwen import qwen_model_profile from pydantic_ai.providers import Provider try: from openai import AsyncOpenAI except ImportError as _import_error: # pragma: no cover raise ImportError( 'Please install the `openai` package to use the LiteLLM provider, ' 'you can use the `openai` optional group — `pip install "pydantic-ai-slim[openai]"`' ) from _import_error class LiteLLMProvider(Provider[AsyncOpenAI]): """Provider for LiteLLM API.""" @property def name(self) -> str: return 'litellm' @property def base_url(self) -> str: return str(self.client.base_url) @property def client(self) -> AsyncOpenAI: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: # Map provider prefixes to their profile functions provider_to_profile = { 'anthropic': anthropic_model_profile, 'openai': openai_model_profile, 'google': google_model_profile, 'mistralai': mistral_model_profile, 'mistral': mistral_model_profile, 'cohere': cohere_model_profile, 'amazon': amazon_model_profile, 'bedrock': amazon_model_profile, 'meta-llama': meta_model_profile, 'meta': meta_model_profile, 'groq': groq_model_profile, 'deepseek': deepseek_model_profile, 'moonshotai': moonshotai_model_profile, 'x-ai': grok_model_profile, 'qwen': qwen_model_profile, } profile = None # Check if model name contains a provider prefix (e.g., "anthropic/claude-3") if '/' in model_name: provider_prefix, model_suffix = model_name.split('/', 1) if provider_prefix in provider_to_profile: profile = provider_to_profile[provider_prefix](model_suffix) # If no profile found, default to OpenAI profile if profile is None: profile = openai_model_profile(model_name) # As LiteLLMProvider is used with OpenAIModel, which uses OpenAIJsonSchemaTransformer, # we maintain that behavior return OpenAIModelProfile(json_schema_transformer=OpenAIJsonSchemaTransformer).update(profile) @overload def __init__( self, *, api_key: str | None = None, api_base: str | None = None, ) -> None: ... @overload def __init__( self, *, api_key: str | None = None, api_base: str | None = None, http_client: AsyncHTTPClient, ) -> None: ... @overload def __init__(self, *, openai_client: AsyncOpenAI) -> None: ... def __init__( self, *, api_key: str | None = None, api_base: str | None = None, openai_client: AsyncOpenAI | None = None, http_client: AsyncHTTPClient | None = None, ) -> None: """Initialize a LiteLLM provider. Args: api_key: API key for the model provider. If None, LiteLLM will try to get it from environment variables. api_base: Base URL for the model provider. Use this for custom endpoints or self-hosted models. openai_client: Pre-configured OpenAI client. If provided, other parameters are ignored. http_client: Custom HTTP client to use. """ if openai_client is not None: self._client = openai_client return # Create OpenAI client that will be used with LiteLLM's completion function # The actual API calls will be intercepted and routed through LiteLLM if http_client is not None: self._client = AsyncOpenAI( base_url=api_base, api_key=api_key or 'litellm-placeholder', http_client=http_client ) else: http_client = cached_async_http_client(provider='litellm') self._client = AsyncOpenAI( base_url=api_base, api_key=api_key or 'litellm-placeholder', http_client=http_client )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server