Skip to main content
Glama

mcp-run-python

Official
by pydantic
moonshotai.py3.25 kB
from __future__ import annotations as _annotations import os from typing import Literal, overload import httpx from openai import AsyncOpenAI from pydantic_ai import ModelProfile from pydantic_ai.exceptions import UserError from pydantic_ai.models import cached_async_http_client from pydantic_ai.profiles.moonshotai import moonshotai_model_profile from pydantic_ai.profiles.openai import ( OpenAIJsonSchemaTransformer, OpenAIModelProfile, ) from pydantic_ai.providers import Provider MoonshotAIModelName = Literal[ 'moonshot-v1-8k', 'moonshot-v1-32k', 'moonshot-v1-128k', 'moonshot-v1-8k-vision-preview', 'moonshot-v1-32k-vision-preview', 'moonshot-v1-128k-vision-preview', 'kimi-latest', 'kimi-thinking-preview', 'kimi-k2-0711-preview', ] class MoonshotAIProvider(Provider[AsyncOpenAI]): """Provider for MoonshotAI platform (Kimi models).""" @property def name(self) -> str: return 'moonshotai' @property def base_url(self) -> str: # OpenAI-compatible endpoint, see MoonshotAI docs return 'https://api.moonshot.ai/v1' @property def client(self) -> AsyncOpenAI: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: profile = moonshotai_model_profile(model_name) # As the MoonshotAI API is OpenAI-compatible, let's assume we also need OpenAIJsonSchemaTransformer, # unless json_schema_transformer is set explicitly. # Also, MoonshotAI does not support strict tool definitions # https://platform.moonshot.ai/docs/guide/migrating-from-openai-to-kimi#about-tool_choice # "Please note that the current version of Kimi API does not support the tool_choice=required parameter." return OpenAIModelProfile( json_schema_transformer=OpenAIJsonSchemaTransformer, openai_supports_tool_choice_required=False, supports_json_object_output=True, ).update(profile) @overload def __init__(self) -> None: ... @overload def __init__(self, *, api_key: str) -> None: ... @overload def __init__(self, *, api_key: str, http_client: httpx.AsyncClient) -> None: ... @overload def __init__(self, *, openai_client: AsyncOpenAI | None = None) -> None: ... def __init__( self, *, api_key: str | None = None, openai_client: AsyncOpenAI | None = None, http_client: httpx.AsyncClient | None = None, ) -> None: api_key = api_key or os.getenv('MOONSHOTAI_API_KEY') if not api_key and openai_client is None: raise UserError( 'Set the `MOONSHOTAI_API_KEY` environment variable or pass it via ' '`MoonshotAIProvider(api_key=...)` to use the MoonshotAI provider.' ) if openai_client is not None: self._client = openai_client elif http_client is not None: self._client = AsyncOpenAI(base_url=self.base_url, api_key=api_key, http_client=http_client) else: http_client = cached_async_http_client(provider='moonshotai') self._client = AsyncOpenAI(base_url=self.base_url, api_key=api_key, http_client=http_client)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server