Skip to main content
Glama

mcp-run-python

Official
by pydantic
ovhcloud.py3.43 kB
from __future__ import annotations as _annotations import os from typing import overload import httpx from pydantic_ai import ModelProfile from pydantic_ai.exceptions import UserError from pydantic_ai.models import cached_async_http_client from pydantic_ai.profiles.deepseek import deepseek_model_profile from pydantic_ai.profiles.harmony import harmony_model_profile from pydantic_ai.profiles.meta import meta_model_profile from pydantic_ai.profiles.mistral import mistral_model_profile from pydantic_ai.profiles.openai import OpenAIJsonSchemaTransformer, OpenAIModelProfile from pydantic_ai.profiles.qwen import qwen_model_profile from pydantic_ai.providers import Provider try: from openai import AsyncOpenAI except ImportError as _import_error: # pragma: no cover raise ImportError( 'Please install the `openai` package to use OVHcloud AI Endpoints provider.' 'You can use the `openai` optional group — `pip install "pydantic-ai-slim[openai]"`' ) from _import_error class OVHcloudProvider(Provider[AsyncOpenAI]): """Provider for OVHcloud AI Endpoints.""" @property def name(self) -> str: return 'ovhcloud' @property def base_url(self) -> str: return 'https://oai.endpoints.kepler.ai.cloud.ovh.net/v1' @property def client(self) -> AsyncOpenAI: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: model_name = model_name.lower() prefix_to_profile = { 'llama': meta_model_profile, 'meta-': meta_model_profile, 'deepseek': deepseek_model_profile, 'mistral': mistral_model_profile, 'gpt': harmony_model_profile, 'qwen': qwen_model_profile, } profile = None for prefix, profile_func in prefix_to_profile.items(): if model_name.startswith(prefix): profile = profile_func(model_name) # As the OVHcloud AI Endpoints API is OpenAI-compatible, let's assume we also need OpenAIJsonSchemaTransformer. return OpenAIModelProfile(json_schema_transformer=OpenAIJsonSchemaTransformer).update(profile) @overload def __init__(self) -> None: ... @overload def __init__(self, *, api_key: str) -> None: ... @overload def __init__(self, *, api_key: str, http_client: httpx.AsyncClient) -> None: ... @overload def __init__(self, *, openai_client: AsyncOpenAI | None = None) -> None: ... def __init__( self, *, api_key: str | None = None, openai_client: AsyncOpenAI | None = None, http_client: httpx.AsyncClient | None = None, ) -> None: api_key = api_key or os.getenv('OVHCLOUD_API_KEY') if not api_key and openai_client is None: raise UserError( 'Set the `OVHCLOUD_API_KEY` environment variable or pass it via ' '`OVHcloudProvider(api_key=...)` to use OVHcloud AI Endpoints provider.' ) if openai_client is not None: self._client = openai_client elif http_client is not None: self._client = AsyncOpenAI(base_url=self.base_url, api_key=api_key, http_client=http_client) else: http_client = cached_async_http_client(provider='ovhcloud') self._client = AsyncOpenAI(base_url=self.base_url, api_key=api_key, http_client=http_client)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server