Skip to main content
Glama
yangkyeongmo

MCP Server for Apache Airflow

by yangkyeongmo

set_task_instances_state

Modify the state of task instances in Apache Airflow by specifying DAG IDs, task IDs, and execution dates. Supports optional parameters to include upstream, downstream, past, or future tasks, and enables dry-run testing.

Instructions

Set a state of task instances

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
dag_idYes
dry_runNo
execution_dateNo
include_downstreamNo
include_futureNo
include_pastNo
include_upstreamNo
stateYes
task_idsNo

Implementation Reference

  • The main handler function for the 'set_task_instances_state' tool. It constructs an UpdateTaskInstancesState object from the input parameters and calls the Airflow DAG API to set the state of task instances.
    async def set_task_instances_state( dag_id: str, state: str, task_ids: Optional[List[str]] = None, execution_date: Optional[str] = None, include_upstream: Optional[bool] = None, include_downstream: Optional[bool] = None, include_future: Optional[bool] = None, include_past: Optional[bool] = None, dry_run: Optional[bool] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: state_request = {"state": state} if task_ids is not None: state_request["task_ids"] = task_ids if execution_date is not None: state_request["execution_date"] = execution_date if include_upstream is not None: state_request["include_upstream"] = include_upstream if include_downstream is not None: state_request["include_downstream"] = include_downstream if include_future is not None: state_request["include_future"] = include_future if include_past is not None: state_request["include_past"] = include_past if dry_run is not None: state_request["dry_run"] = dry_run update_task_instances_state = UpdateTaskInstancesState(**state_request) response = dag_api.post_set_task_instances_state( dag_id=dag_id, update_task_instances_state=update_task_instances_state, ) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • Registration of all Airflow DAG tools, including the tuple for 'set_task_instances_state' which provides the function reference, tool name, description, and read-only flag.
    def get_all_functions() -> list[tuple[Callable, str, str, bool]]: """Return list of (function, name, description, is_read_only) tuples for registration.""" return [ (get_dags, "fetch_dags", "Fetch all DAGs", True), (get_dag, "get_dag", "Get a DAG by ID", True), (get_dag_details, "get_dag_details", "Get a simplified representation of DAG", True), (get_dag_source, "get_dag_source", "Get a source code", True), (pause_dag, "pause_dag", "Pause a DAG by ID", False), (unpause_dag, "unpause_dag", "Unpause a DAG by ID", False), (get_dag_tasks, "get_dag_tasks", "Get tasks for DAG", True), (get_task, "get_task", "Get a task by ID", True), (get_tasks, "get_tasks", "Get tasks for DAG", True), (patch_dag, "patch_dag", "Update a DAG", False), (patch_dags, "patch_dags", "Update multiple DAGs", False), (delete_dag, "delete_dag", "Delete a DAG", False), (clear_task_instances, "clear_task_instances", "Clear a set of task instances", False), (set_task_instances_state, "set_task_instances_state", "Set a state of task instances", False), (reparse_dag_file, "reparse_dag_file", "Request re-parsing of a DAG file", False), ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-apache-airflow'

If you have feedback or need assistance with the MCP directory API, please join our Discord server