Skip to main content
Glama

MCP Server for Apache Airflow

by yangkyeongmo

mcp-server-apache-airflow

A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients. This project provides a standardized way to interact with Apache Airflow through the Model Context Protocol.

About

This project implements a Model Context Protocol server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.

Feature Implementation Status

FeatureAPI PathStatus
DAG Management
List DAGs/api/v1/dags
Get DAG Details/api/v1/dags/{dag_id}
Pause DAG/api/v1/dags/{dag_id}
Unpause DAG/api/v1/dags/{dag_id}
Update DAG/api/v1/dags/{dag_id}
Delete DAG/api/v1/dags/{dag_id}
Get DAG Source/api/v1/dagSources/{file_token}
Patch Multiple DAGs/api/v1/dags
Reparse DAG File/api/v1/dagSources/{file_token}/reparse
DAG Runs
List DAG Runs/api/v1/dags/{dag_id}/dagRuns
Create DAG Run/api/v1/dags/{dag_id}/dagRuns
Get DAG Run Details/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Update DAG Run/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Delete DAG Run/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Get DAG Runs Batch/api/v1/dags/~/dagRuns/list
Clear DAG Run/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear
Set DAG Run Note/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote
Get Upstream Dataset Events/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents
Tasks
List DAG Tasks/api/v1/dags/{dag_id}/tasks
Get Task Details/api/v1/dags/{dag_id}/tasks/{task_id}
Get Task Instance/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
List Task Instances/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances
Update Task Instance/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
Clear Task Instances/api/v1/dags/{dag_id}/clearTaskInstances
Set Task Instances State/api/v1/dags/{dag_id}/updateTaskInstancesState
Variables
List Variables/api/v1/variables
Create Variable/api/v1/variables
Get Variable/api/v1/variables/{variable_key}
Update Variable/api/v1/variables/{variable_key}
Delete Variable/api/v1/variables/{variable_key}
Connections
List Connections/api/v1/connections
Create Connection/api/v1/connections
Get Connection/api/v1/connections/{connection_id}
Update Connection/api/v1/connections/{connection_id}
Delete Connection/api/v1/connections/{connection_id}
Test Connection/api/v1/connections/test
Pools
List Pools/api/v1/pools
Create Pool/api/v1/pools
Get Pool/api/v1/pools/{pool_name}
Update Pool/api/v1/pools/{pool_name}
Delete Pool/api/v1/pools/{pool_name}
XComs
List XComs/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries
Get XCom Entry/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key}
Datasets
List Datasets/api/v1/datasets
Get Dataset/api/v1/datasets/{uri}
Get Dataset Events/api/v1/datasetEvents
Create Dataset Event/api/v1/datasetEvents
Get DAG Dataset Queued Event/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Get DAG Dataset Queued Events/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Delete DAG Dataset Queued Event/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Delete DAG Dataset Queued Events/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Get Dataset Queued Events/api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Delete Dataset Queued Events/api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Monitoring
Get Health/api/v1/health
DAG Stats
Get DAG Stats/api/v1/dags/statistics
Config
Get Config/api/v1/config
Plugins
Get Plugins/api/v1/plugins
Providers
List Providers/api/v1/providers
Event Logs
List Event Logs/api/v1/eventLogs
Get Event Log/api/v1/eventLogs/{event_log_id}
System
Get Import Errors/api/v1/importErrors
Get Import Error Details/api/v1/importErrors/{import_error_id}
Get Health Status/api/v1/health
Get Version/api/v1/version

Setup

Dependencies

This project depends on the official Apache Airflow client library (apache-airflow-client). It will be automatically installed when you install this package.

Environment Variables

Set the following environment variables:

AIRFLOW_HOST=<your-airflow-host> # Optional, defaults to http://localhost:8080 AIRFLOW_USERNAME=<your-airflow-username> AIRFLOW_PASSWORD=<your-airflow-password> AIRFLOW_API_VERSION=v1 # Optional, defaults to v1

Usage with Claude Desktop

Add to your claude_desktop_config.json:

{ "mcpServers": { "mcp-server-apache-airflow": { "command": "uvx", "args": ["mcp-server-apache-airflow"], "env": { "AIRFLOW_HOST": "https://your-airflow-host", "AIRFLOW_USERNAME": "your-username", "AIRFLOW_PASSWORD": "your-password" } } } }

For read-only mode (recommended for safety):

{ "mcpServers": { "mcp-server-apache-airflow": { "command": "uvx", "args": ["mcp-server-apache-airflow", "--read-only"], "env": { "AIRFLOW_HOST": "https://your-airflow-host", "AIRFLOW_USERNAME": "your-username", "AIRFLOW_PASSWORD": "your-password" } } } }

Alternative configuration using uv:

{ "mcpServers": { "mcp-server-apache-airflow": { "command": "uv", "args": [ "--directory", "/path/to/mcp-server-apache-airflow", "run", "mcp-server-apache-airflow" ], "env": { "AIRFLOW_HOST": "https://your-airflow-host", "AIRFLOW_USERNAME": "your-username", "AIRFLOW_PASSWORD": "your-password" } } } }

Replace /path/to/mcp-server-apache-airflow with the actual path where you've cloned the repository.

Selecting the API groups

You can select the API groups you want to use by setting the --apis flag.

uv run mcp-server-apache-airflow --apis dag --apis dagrun

The default is to use all APIs.

Allowed values are:

  • config
  • connections
  • dag
  • dagrun
  • dagstats
  • dataset
  • eventlog
  • importerror
  • monitoring
  • plugin
  • pool
  • provider
  • taskinstance
  • variable
  • xcom

Read-Only Mode

You can run the server in read-only mode by using the --read-only flag. This will only expose tools that perform read operations (GET requests) and exclude any tools that create, update, or delete resources.

uv run mcp-server-apache-airflow --read-only

In read-only mode, the server will only expose tools like:

  • Listing DAGs, DAG runs, tasks, variables, connections, etc.
  • Getting details of specific resources
  • Reading configurations and monitoring information
  • Testing connections (non-destructive)

Write operations like creating, updating, deleting DAGs, variables, connections, triggering DAG runs, etc. will not be available in read-only mode.

You can combine read-only mode with API group selection:

uv run mcp-server-apache-airflow --read-only --apis dag --apis variable

Manual Execution

You can also run the server manually:

make run

make run accepts following options:

Options:

  • --port: Port to listen on for SSE (default: 8000)
  • --transport: Transport type (stdio/sse, default: stdio)

Or, you could run the sse server directly, which accepts same parameters:

make run-sse

Installing via Smithery

To install Apache Airflow MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude

Development

Setting up Development Environment

  1. Clone the repository:
git clone https://github.com/yangkyeongmo/mcp-server-apache-airflow.git cd mcp-server-apache-airflow
  1. Install development dependencies:
uv sync --dev
  1. Create a .env file for environment variables (optional for development):
touch .env

Note: No environment variables are required for running tests. The AIRFLOW_HOST defaults to http://localhost:8080 for development and testing purposes.

Running Tests

The project uses pytest for testing with the following commands available:

# Run all tests make test

Code Quality

# Run linting make lint # Run code formatting make format

Continuous Integration

The project includes a GitHub Actions workflow (.github/workflows/test.yml) that automatically:

  • Runs tests on Python 3.10, 3.11, and 3.12
  • Executes linting checks using ruff
  • Runs on every push and pull request to main branch

The CI pipeline ensures code quality and compatibility across supported Python versions before any changes are merged.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

The package is deployed automatically to PyPI when project.version is updated in pyproject.toml. Follow semver for versioning.

Please include version update in the PR in order to apply the changes to core logic.

License

MIT License

Install Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Bietet MCP-Clients eine standardisierte Möglichkeit zur Interaktion mit der REST-API von Apache Airflow und unterstützt Vorgänge wie die DAG-Verwaltung und die Überwachung der Systemintegrität von Airflow.

  1. Um
    1. Status der Funktionsimplementierung
      1. Aufstellen
        1. Abhängigkeiten
        2. Umgebungsvariablen
        3. Verwendung mit Claude Desktop
        4. Auswählen der API-Gruppen
        5. Manuelle Ausführung
        6. Installation über Smithery
      2. Beitragen
        1. Lizenz

          Related MCP Servers

          • -
            security
            A
            license
            -
            quality
            An MCP server that exposes HTTP methods defined in an OpenAPI specification as tools, enabling interaction with APIs via the Model Context Protocol.
            Last updated -
            8
            Python
            MIT License
          • -
            security
            A
            license
            -
            quality
            A lightweight MCP server that enables agents to interface with Cloudflare's REST API, allowing management of DNS records and other Cloudflare services.
            Last updated -
            0
            16
            GPL 2.0
          • -
            security
            A
            license
            -
            quality
            Provides integration with Apache Airflow's REST API, allowing AI assistants to programmatically interact with Airflow workflows, monitor DAG runs, and manage tasks.
            Last updated -
            JavaScript
            MIT License

          View all related MCP servers

          MCP directory API

          We provide all the information about MCP servers via our MCP API.

          curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-apache-airflow'

          If you have feedback or need assistance with the MCP directory API, please join our Discord server