Skip to main content
Glama
yangkyeongmo

MCP Server for Apache Airflow

by yangkyeongmo

list_task_instance_tries

Retrieve execution attempts for a specific Airflow task instance to monitor performance and debug failures. Use DAG ID, DAG run ID, and task ID to query task execution history.

Instructions

List task instance tries by DAG ID, DAG run ID, and task ID

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
dag_idYes
dag_run_idYes
task_idYes
limitNo
offsetNo
order_byNo

Implementation Reference

  • The async handler function for the 'list_task_instance_tries' tool. It accepts dag_id, dag_run_id, task_id, optional limit, offset, order_by; calls the Airflow TaskInstanceApi.get_task_instance_tries and returns the response as TextContent.
    async def list_task_instance_tries( dag_id: str, dag_run_id: str, task_id: str, limit: Optional[int] = None, offset: Optional[int] = None, order_by: Optional[str] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: # Build parameters dictionary kwargs: Dict[str, Any] = {} if limit is not None: kwargs["limit"] = limit if offset is not None: kwargs["offset"] = offset if order_by is not None: kwargs["order_by"] = order_by response = task_instance_api.get_task_instance_tries( dag_id=dag_id, dag_run_id=dag_run_id, task_id=task_id, **kwargs ) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • Registration tuple for the 'list_task_instance_tries' tool in the get_all_functions() list, including the handler function, name, description, and read-only flag.
    ( list_task_instance_tries, "list_task_instance_tries", "List task instance tries by DAG ID, DAG run ID, and task ID", True, ),

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-apache-airflow'

If you have feedback or need assistance with the MCP directory API, please join our Discord server