Skip to main content
Glama
yangkyeongmo

MCP Server for Apache Airflow

by yangkyeongmo

set_dag_run_note

Add or update notes on Airflow DAG runs to document execution details, track issues, or record observations for workflow monitoring.

Instructions

Update the DagRun note

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
dag_idYes
dag_run_idYes
noteYes

Implementation Reference

  • The main handler function that executes the tool logic: creates SetDagRunNote model and calls the Airflow DAGRunApi.set_dag_run_note.
    async def set_dag_run_note( dag_id: str, dag_run_id: str, note: str ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: set_dag_run_note = SetDagRunNote(note=note) response = dag_run_api.set_dag_run_note(dag_id=dag_id, dag_run_id=dag_run_id, set_dag_run_note=set_dag_run_note) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • Tool registration via get_all_functions(), which returns tuples including (set_dag_run_note, "set_dag_run_note", "Update the DagRun note", False).
    def get_all_functions() -> list[tuple[Callable, str, str, bool]]: """Return list of (function, name, description, is_read_only) tuples for registration.""" return [ (post_dag_run, "post_dag_run", "Trigger a DAG by ID", False), (get_dag_runs, "get_dag_runs", "Get DAG runs by ID", True), (get_dag_runs_batch, "get_dag_runs_batch", "List DAG runs (batch)", True), (get_dag_run, "get_dag_run", "Get a DAG run by DAG ID and DAG run ID", True), (update_dag_run_state, "update_dag_run_state", "Update a DAG run state by DAG ID and DAG run ID", False), (delete_dag_run, "delete_dag_run", "Delete a DAG run by DAG ID and DAG run ID", False), (clear_dag_run, "clear_dag_run", "Clear a DAG run", False), (set_dag_run_note, "set_dag_run_note", "Update the DagRun note", False), (get_upstream_dataset_events, "get_upstream_dataset_events", "Get dataset events for a DAG run", True), ]
  • Import of the SetDagRunNote Pydantic model used for input schema and API call.
    from airflow_client.client.model.set_dag_run_note import SetDagRunNote

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-apache-airflow'

If you have feedback or need assistance with the MCP directory API, please join our Discord server