Skip to main content
Glama
yangkyeongmo

MCP Server for Apache Airflow

by yangkyeongmo

patch_dag

Modify Apache Airflow DAG configurations by updating pause status or tags to manage workflow execution.

Instructions

Update a DAG

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
dag_idYes
is_pausedNo
tagsNo

Implementation Reference

  • The core handler function for the 'patch_dag' tool. It constructs a DAG update request based on provided is_paused and/or tags parameters, then calls the Airflow DAG API to apply the partial update.
    async def patch_dag( dag_id: str, is_paused: Optional[bool] = None, tags: Optional[List[str]] = None ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: update_request = {} update_mask = [] if is_paused is not None: update_request["is_paused"] = is_paused update_mask.append("is_paused") if tags is not None: update_request["tags"] = tags update_mask.append("tags") dag = DAG(**update_request) response = dag_api.patch_dag(dag_id=dag_id, dag=dag, update_mask=update_mask) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • The get_all_functions() in dag.py lists all DAG-related tools for registration, including the 'patch_dag' tool with name 'patch_dag', description 'Update a DAG', marked as non-read-only (False). This list is imported and used in src/main.py to register the tools with the MCP server.
    def get_all_functions() -> list[tuple[Callable, str, str, bool]]: """Return list of (function, name, description, is_read_only) tuples for registration.""" return [ (get_dags, "fetch_dags", "Fetch all DAGs", True), (get_dag, "get_dag", "Get a DAG by ID", True), (get_dag_details, "get_dag_details", "Get a simplified representation of DAG", True), (get_dag_source, "get_dag_source", "Get a source code", True), (pause_dag, "pause_dag", "Pause a DAG by ID", False), (unpause_dag, "unpause_dag", "Unpause a DAG by ID", False), (get_dag_tasks, "get_dag_tasks", "Get tasks for DAG", True), (get_task, "get_task", "Get a task by ID", True), (get_tasks, "get_tasks", "Get tasks for DAG", True), (patch_dag, "patch_dag", "Update a DAG", False), (patch_dags, "patch_dags", "Update multiple DAGs", False), (delete_dag, "delete_dag", "Delete a DAG", False), (clear_task_instances, "clear_task_instances", "Clear a set of task instances", False), (set_task_instances_state, "set_task_instances_state", "Set a state of task instances", False), (reparse_dag_file, "reparse_dag_file", "Request re-parsing of a DAG file", False), ]
  • src/main.py:95-97 (registration)
    The generic tool registration loop in main.py that adds all functions from imported get_all_functions() lists (including dag.py's patch_dag) as MCP tools using fastmcp's Tool.from_function.
    for func, name, description, *_ in functions: app.add_tool(Tool.from_function(func, name=name, description=description))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-apache-airflow'

If you have feedback or need assistance with the MCP directory API, please join our Discord server