Skip to main content
Glama
yangkyeongmo

MCP Server for Apache Airflow

by yangkyeongmo

delete_dag

Remove a DAG from Apache Airflow to clean up workflows and manage system resources efficiently.

Instructions

Delete a DAG

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
dag_idYes

Implementation Reference

  • The handler function that implements the core logic of the 'delete_dag' tool by calling the Airflow DAG API's delete_dag method with the provided dag_id and returning the response.
    async def delete_dag(dag_id: str) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: response = dag_api.delete_dag(dag_id=dag_id) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • The get_all_functions() in dag.py returns a list of tuples including the registration for 'delete_dag' tool: (delete_dag, "delete_dag", "Delete a DAG", False). This list is imported and used in src/main.py to register tools with the MCP server.
    return [ (get_dags, "fetch_dags", "Fetch all DAGs", True), (get_dag, "get_dag", "Get a DAG by ID", True), (get_dag_details, "get_dag_details", "Get a simplified representation of DAG", True), (get_dag_source, "get_dag_source", "Get a source code", True), (pause_dag, "pause_dag", "Pause a DAG by ID", False), (unpause_dag, "unpause_dag", "Unpause a DAG by ID", False), (get_dag_tasks, "get_dag_tasks", "Get tasks for DAG", True), (get_task, "get_task", "Get a task by ID", True), (get_tasks, "get_tasks", "Get tasks for DAG", True), (patch_dag, "patch_dag", "Update a DAG", False), (patch_dags, "patch_dags", "Update multiple DAGs", False), (delete_dag, "delete_dag", "Delete a DAG", False), (clear_task_instances, "clear_task_instances", "Clear a set of task instances", False), (set_task_instances_state, "set_task_instances_state", "Set a state of task instances", False), (reparse_dag_file, "reparse_dag_file", "Request re-parsing of a DAG file", False), ]
  • src/main.py:95-97 (registration)
    Generic tool registration loop in the main MCP server entrypoint that registers all functions from various Airflow modules, including delete_dag from dag.py, using fastmcp.tools.Tool.from_function.
    for func, name, description, *_ in functions: app.add_tool(Tool.from_function(func, name=name, description=description))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-apache-airflow'

If you have feedback or need assistance with the MCP directory API, please join our Discord server