Skip to main content
Glama

datalab_shopping_keyword_by_age

Analyze Naver Shopping keyword trends by age groups to understand consumer behavior. Input keyword, category, date range, and age groups for targeted insights.

Instructions

Perform a trend analysis on Naver Shopping keywords by age. (네이버 쇼핑 키워드 연령별 트렌드 분석)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
agesYesAge groups
categoryYesCategory code
endDateYesEnd date (yyyy-mm-dd)
keywordYesSearch keyword
startDateYesStart date (yyyy-mm-dd)
timeUnitYesTime unit

Implementation Reference

  • Handler function that maps tool arguments to client method parameters and calls the Naver DataLab API for shopping keyword trends by age.
    export async function handleShoppingKeywordByAgeTrend( params: DatalabShoppingKeywordAge ) { return client.datalabShoppingKeywordByAge({ startDate: params.startDate, endDate: params.endDate, timeUnit: params.timeUnit, category: params.category, keyword: params.keyword, ages: params.ages, }); }
  • Client method that performs the HTTP POST request to Naver DataLab API endpoint for shopping keyword by age trends.
    async datalabShoppingKeywordByAge( params: DatalabShoppingKeywordRequest ): Promise<DatalabShoppingResponse> { return this.post( `${this.datalabBaseUrl}/shopping/category/keyword/age`, params ); }
  • src/index.ts:408-423 (registration)
    MCP server registration of the 'datalab_shopping_keyword_by_age' tool, including description, input schema, and execution handler.
    server.registerTool( "datalab_shopping_keyword_by_age", { description: "👶👦👨👴🔍 Analyze keyword performance by age groups within shopping categories. Use find_category first to get category codes. Perfect for age-targeted marketing and understanding generational shopping preferences. (쇼핑 키워드 연령별 트렌드 - 먼저 find_category 도구로 카테고리 코드를 찾으세요)", inputSchema: DatalabShoppingKeywordAgeSchema.shape, }, async (args) => { const result = await datalabToolHandlers.datalab_shopping_keyword_by_age( args ); return { content: [{ type: "text", text: JSON.stringify(result, null, 2) }], }; } );
  • Zod schema defining the input parameters for the datalab_shopping_keyword_by_age tool: startDate, endDate, timeUnit, category, keyword, ages.
    export const DatalabShoppingKeywordAgeSchema = DatalabBaseSchema.extend({ category: z.string().describe("Category code"), keyword: z.string().describe("Search keyword"), ages: z .array(z.enum(["10", "20", "30", "40", "50", "60"])) .describe("Age groups"), });
  • Entry in datalabToolHandlers map that registers the tool handler function, logs args, and delegates to the main handler.
    datalab_shopping_keyword_by_age: (args) => { console.error("datalab_shopping_keyword_by_age called with args:", JSON.stringify(args, null, 2)); return handleShoppingKeywordByAgeTrend(args); },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isnow890/naver-search-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server