Skip to main content
Glama

datalab_shopping_category

Analyze Naver Shopping category trends by specifying time units, date ranges, and category codes to identify market patterns and consumer behavior.

Instructions

Perform a trend analysis on Naver Shopping category. (네이버 쇼핑 카테고리별 트렌드 분석)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
categoryYesArray of category name and code pairs
endDateYesEnd date (yyyy-mm-dd)
startDateYesStart date (yyyy-mm-dd)
timeUnitYesTime unit

Implementation Reference

  • Handler function that executes the core logic by delegating to the Naver client for shopping category trend analysis.
    export async function handleShoppingCategoryTrend(params: DatalabShopping) { return client.datalabShoppingCategory(params); }
  • Zod schema defining the input parameters for the datalab_shopping_category tool, including category details.
    // 쇼핑 카테고리 스키마 export const DatalabShoppingSchema = DatalabBaseSchema.extend({ category: z .array( z.object({ name: z.string().describe("Category name"), param: z.array(z.string()).describe("Category codes"), }) ) .describe("Array of category name and code pairs"), });
  • src/index.ts:283-296 (registration)
    MCP server tool registration for datalab_shopping_category, including description and input schema reference.
    server.registerTool( "datalab_shopping_category", { description: "🛍️ STEP 2: Analyze shopping category trends over time. Use find_category first to get category codes. BUSINESS CASES: Market size analysis, seasonal trend identification, category performance comparison. EXAMPLE: Compare '패션의류' vs '화장품' trends over 6 months. For current period analysis, use get_current_korean_time to set proper date ranges. (네이버 쇼핑 카테고리별 트렌드 분석 - 먼저 find_category 도구로 카테고리 코드를 찾고, 현재 기간 분석시 get_current_korean_time으로 적절한 날짜 범위 설정)", inputSchema: DatalabShoppingSchema.shape, }, async (args) => { const result = await datalabToolHandlers.datalab_shopping_category(args); return { content: [{ type: "text", text: JSON.stringify(result, null, 2) }], }; } );
  • Client method that performs the actual HTTP POST request to Naver DataLab API for shopping categories.
    async datalabShoppingCategory( params: DatalabShoppingCategoryRequest ): Promise<DatalabShoppingResponse> { return this.post(`${this.datalabBaseUrl}/shopping/categories`, params);
  • Handler map entry that logs args and delegates to the specific trend handler.
    datalab_shopping_category: (args) => { console.error("datalab_shopping_category called with args:", JSON.stringify(args, null, 2)); return handleShoppingCategoryTrend(args);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isnow890/naver-search-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server