Skip to main content
Glama
01-overview.md5.44 kB
# Backend Services Reference Overview BioMCP integrates with multiple biomedical databases and services to provide comprehensive research capabilities. This reference documents the underlying APIs and their capabilities. ## Service Categories ### Literature and Publications - **[PubTator3](06-pubtator3.md)**: Biomedical literature with entity annotations - **Europe PMC**: Preprints from bioRxiv and medRxiv ### Clinical Trials - **[ClinicalTrials.gov](04-clinicaltrials-gov.md)**: U.S. and international clinical trials registry - **[NCI CTS API](05-nci-cts-api.md)**: National Cancer Institute's enhanced trial search ### Biomedical Annotations - **[BioThings Suite](02-biothings-suite.md)**: - MyGene.info - Gene annotations - MyVariant.info - Variant annotations - MyDisease.info - Disease ontology - MyChem.info - Drug/chemical data ### Cancer Genomics - **[cBioPortal](03-cbioportal.md)**: Cancer genomics portal with mutation data - **TCGA**: The Cancer Genome Atlas (via MyVariant.info) ### Variant Effect Prediction - **[AlphaGenome](07-alphagenome.md)**: Google DeepMind's AI for regulatory predictions ## API Authentication | Service | Authentication Required | Type | Rate Limits | | ------------------ | ----------------------- | ------- | ------------------- | | PubTator3 | No | Public | 3 requests/second | | ClinicalTrials.gov | No | Public | 50,000 requests/day | | NCI CTS API | Yes | API Key | 1,000 requests/day | | BioThings APIs | No | Public | 1,000 requests/hour | | cBioPortal | Optional | Token | Higher with token | | AlphaGenome | Yes | API Key | Contact provider | ## Data Flow Architecture ``` User Query → BioMCP Tools → Backend APIs → Unified Response Example Flow: 1. User: "Find articles about BRAF mutations" 2. BioMCP: article_searcher tool 3. APIs Called: - PubTator3 (articles) - cBioPortal (mutation data) - Europe PMC (preprints) 4. Response: Integrated results with citations ``` ## Service Reliability ### Primary Services - **PubTator3**: 99.9% uptime, updated daily - **ClinicalTrials.gov**: 99.5% uptime, updated daily - **BioThings APIs**: 99.9% uptime, real-time data ### Fallback Strategies - Cache frequently accessed data - Implement exponential backoff - Use alternative endpoints when available ## Common Integration Patterns ### 1. Entity Recognition Enhancement ``` PubTator3 → Extract entities → BioThings → Get detailed annotations ``` ### 2. Variant to Trial Pipeline ``` MyVariant.info → Get gene → ClinicalTrials.gov → Find relevant trials ``` ### 3. Comprehensive Gene Analysis ``` MyGene.info → Basic info cBioPortal → Cancer mutations PubTator3 → Literature AlphaGenome → Predictions ``` ## Performance Considerations ### Response Times (typical) - PubTator3: 200-500ms - ClinicalTrials.gov: 300-800ms - BioThings APIs: 100-300ms - cBioPortal: 200-600ms - AlphaGenome: 1-3 seconds ### Optimization Strategies 1. **Batch requests** when APIs support it 2. **Cache static data** (gene names, ontologies) 3. **Parallelize independent** API calls 4. **Use pagination** for large result sets ## Error Handling ### Common Error Types - **Rate Limiting**: 429 errors, implement backoff - **Invalid Parameters**: 400 errors, validate inputs - **Service Unavailable**: 503 errors, retry with delay - **Authentication**: 401 errors, check API keys ### Error Response Format ```json { "error": { "code": "RATE_LIMIT_EXCEEDED", "message": "API rate limit exceeded", "retry_after": 3600 } } ``` ## Data Formats ### Input Formats - **Identifiers**: HGNC symbols, rsIDs, NCT numbers, PMIDs - **Coordinates**: GRCh38 genomic positions - **Terms**: MeSH, MONDO, HPO ontologies ### Output Formats - **JSON**: Primary format for all APIs - **XML**: Available for some services - **TSV/CSV**: Export options for bulk data ## Update Frequencies | Service | Update Frequency | Data Lag | | ------------------ | ---------------- | ---------- | | PubTator3 | Daily | 1-2 days | | ClinicalTrials.gov | Daily | Real-time | | NCI CTS | Daily | 1 day | | BioThings | Real-time | Minutes | | cBioPortal | Quarterly | 3-6 months | ## Best Practices ### 1. API Key Management - Store keys securely - Rotate keys periodically - Monitor usage against limits ### 2. Error Recovery - Implement retry logic - Log failed requests - Provide fallback data ### 3. Data Validation - Verify gene symbols - Validate genomic coordinates - Check identifier formats ### 4. Performance - Cache when appropriate - Batch similar requests - Use appropriate page sizes ## Getting Started 1. Review individual service documentation 2. Obtain necessary API keys 3. Test endpoints with sample data 4. Implement error handling 5. Monitor usage and performance ## Support Resources - **PubTator3**: [Support Forum](https://www.ncbi.nlm.nih.gov/research/pubtator3/) - **ClinicalTrials.gov**: [Help Desk](https://clinicaltrials.gov/help) - **BioThings**: [Documentation](https://docs.biothings.io/) - **cBioPortal**: [User Guide](https://docs.cbioportal.org/) - **NCI**: [API Support](https://api.cancer.gov/support)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/genomoncology/biomcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server