Skip to main content
Glama

MCP-Airflow-API

list_task_instances_batch

Retrieve and filter task instances in bulk from Apache Airflow using criteria like DAG IDs, task states, execution dates, and duration for streamlined batch operations.

Instructions

[Tool Role]: Lists task instances in batch with multiple filtering criteria for bulk operations.

Relative date filters (if provided) are resolved against the server's current time.

Args: dag_ids: List of DAG IDs to filter by (optional) dag_run_ids: List of DAG run IDs to filter by (optional) task_ids: List of task IDs to filter by (optional) execution_date_gte: Filter by execution date greater than or equal to (ISO format, optional) execution_date_lte: Filter by execution date less than or equal to (ISO format, optional) start_date_gte: Filter by start date greater than or equal to (ISO format, optional) start_date_lte: Filter by start date less than or equal to (ISO format, optional) end_date_gte: Filter by end date greater than or equal to (ISO format, optional) end_date_lte: Filter by end date less than or equal to (ISO format, optional) duration_gte: Filter by duration greater than or equal to (seconds, optional) duration_lte: Filter by duration less than or equal to (seconds, optional) state: List of task states to filter by (optional) pool: List of pool names to filter by (optional) queue: List of queue names to filter by (optional)

Returns: Batch list of task instances with filtering results: task_instances, total_entries, applied_filters

Input Schema

NameRequiredDescriptionDefault
dag_idsNo
dag_run_idsNo
duration_gteNo
duration_lteNo
end_date_gteNo
end_date_lteNo
execution_date_gteNo
execution_date_lteNo
poolNo
queueNo
start_date_gteNo
start_date_lteNo
stateNo
task_idsNo

Input Schema (JSON Schema)

{ "properties": { "dag_ids": { "default": null, "items": { "type": "string" }, "title": "Dag Ids", "type": "array" }, "dag_run_ids": { "default": null, "items": { "type": "string" }, "title": "Dag Run Ids", "type": "array" }, "duration_gte": { "default": null, "title": "Duration Gte", "type": "number" }, "duration_lte": { "default": null, "title": "Duration Lte", "type": "number" }, "end_date_gte": { "default": null, "title": "End Date Gte", "type": "string" }, "end_date_lte": { "default": null, "title": "End Date Lte", "type": "string" }, "execution_date_gte": { "default": null, "title": "Execution Date Gte", "type": "string" }, "execution_date_lte": { "default": null, "title": "Execution Date Lte", "type": "string" }, "pool": { "default": null, "items": { "type": "string" }, "title": "Pool", "type": "array" }, "queue": { "default": null, "items": { "type": "string" }, "title": "Queue", "type": "array" }, "start_date_gte": { "default": null, "title": "Start Date Gte", "type": "string" }, "start_date_lte": { "default": null, "title": "Start Date Lte", "type": "string" }, "state": { "default": null, "items": { "type": "string" }, "title": "State", "type": "array" }, "task_ids": { "default": null, "items": { "type": "string" }, "title": "Task Ids", "type": "array" } }, "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/call518/MCP-Airflow-API'

If you have feedback or need assistance with the MCP directory API, please join our Discord server