Skip to main content
Glama

MCP-Airflow-API

get_task_instance_logs

Retrieve logs for a specific task instance in Apache Airflow, including content and metadata. Specify DAG, task, and try number to fetch detailed execution logs or metadata only. Supports pagination for large logs.

Instructions

[Tool Role]: Retrieves logs for a specific task instance and its try number with content and metadata.

Args: dag_id: The DAG ID containing the task dag_run_id: The DAG run ID containing the task instance task_id: The task ID to get logs for try_number: The try number for the task instance (default: 1) full_content: Whether to return full log content or just metadata (default: False) token: Pagination token for large logs (optional)

Returns: Task instance logs with content and metadata: task_id, dag_id, dag_run_id, try_number, content, metadata

Input Schema

NameRequiredDescriptionDefault
dag_idYes
dag_run_idYes
full_contentNo
task_idYes
tokenNo
try_numberNo

Input Schema (JSON Schema)

{ "properties": { "dag_id": { "title": "Dag Id", "type": "string" }, "dag_run_id": { "title": "Dag Run Id", "type": "string" }, "full_content": { "default": false, "title": "Full Content", "type": "boolean" }, "task_id": { "title": "Task Id", "type": "string" }, "token": { "default": null, "title": "Token", "type": "string" }, "try_number": { "default": 1, "title": "Try Number", "type": "integer" } }, "required": [ "dag_id", "dag_run_id", "task_id" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/call518/MCP-Airflow-API'

If you have feedback or need assistance with the MCP directory API, please join our Discord server