Skip to main content
Glama

MCP-Airflow-API

get_dags_detailed_batch

Retrieve detailed information and latest execution data for multiple DAGs in batch, combining static configuration and dynamic runtime details for streamlined Airflow management.

Instructions

[Tool Role]: Retrieves detailed information for multiple DAGs in batch with get_dag() level detail plus latest run information.

This tool combines list_dags() filtering with get_dag() detailed information retrieval, providing comprehensive DAG details AND latest execution information for multiple DAGs in a single response. Each DAG entry includes both static configuration details and dynamic runtime information.

Args: limit: Maximum number of DAGs to process (default: 100) - Use higher values (500-1000) for large environments - Ignored when fetch_all=True offset: Number of DAGs to skip for pagination (default: 0) fetch_all: If True, fetches all DAGs regardless of limit/offset (default: False) id_contains: Filter DAGs by ID containing this string (optional) name_contains: Filter DAGs by display name containing this string (optional) is_active: Filter by active status - True/False (optional) is_paused: Filter by paused status - True/False (optional)

Usage Examples: - All unpaused DAGs with full details and latest runs: get_dags_detailed_batch(fetch_all=True, is_paused=False) - Active, unpaused DAGs only: get_dags_detailed_batch(is_active=True, is_paused=False) - DAGs containing "example": get_dags_detailed_batch(id_contains="example", limit=50) - Paginated batch: get_dags_detailed_batch(limit=100, offset=200)

Returns: Dictionary containing: - dags_detailed: List of detailed DAG objects with: * All get_dag() fields (dag_id, schedule_interval, start_date, owners, tags, etc.) * latest_dag_run: Most recent execution information (run_id, state, start_date, end_date, etc.) - total_processed: Number of DAGs successfully processed - total_available: Total number of DAGs matching initial filters - processing_stats: Success/failure counts and error details - applied_filters: Summary of filters applied - pagination_info: Current page info and remaining counts

Input Schema

NameRequiredDescriptionDefault
fetch_allNo
id_containsNo
is_activeNo
is_pausedNo
limitNo
name_containsNo
offsetNo

Input Schema (JSON Schema)

{ "properties": { "fetch_all": { "default": false, "title": "Fetch All", "type": "boolean" }, "id_contains": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Id Contains" }, "is_active": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Is Active" }, "is_paused": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Is Paused" }, "limit": { "default": 100, "title": "Limit", "type": "integer" }, "name_contains": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Name Contains" }, "offset": { "default": 0, "title": "Offset", "type": "integer" } }, "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/call518/MCP-Airflow-API'

If you have feedback or need assistance with the MCP directory API, please join our Discord server