Skip to main content
Glama

get_dag

Retrieve detailed information for a specific DAG in Apache Airflow to inspect workflows, monitor tasks, and analyze pipeline configurations.

Instructions

[Tool Role]: Retrieves detailed information for a specific DAG.

Args: dag_id: The DAG ID to get details for

Returns: Comprehensive DAG details

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
dag_idYes

Implementation Reference

  • The handler function for the 'get_dag' MCP tool. Decorated with @mcp.tool() for automatic registration. Delegates core logic to the helper function get_dag_detailed_info.
    @mcp.tool() async def get_dag(dag_id: str) -> Dict[str, Any]: """ [Tool Role]: Retrieves detailed information for a specific DAG. Args: dag_id: The DAG ID to get details for Returns: Comprehensive DAG details """ return await get_dag_detailed_info(dag_id)
  • Core helper function implementing the DAG details retrieval via Airflow REST API (/dags/{dag_id}), parses and formats the response into a structured dictionary.
    async def get_dag_detailed_info(dag_id: str) -> Dict[str, Any]: """ Internal helper function to get detailed DAG information. This function contains the actual implementation logic that can be reused. """ if not dag_id: raise ValueError("dag_id must not be empty") resp = await airflow_request("GET", f"/dags/{dag_id}") resp.raise_for_status() dag = resp.json() return { "dag_id": dag.get("dag_id"), "dag_display_name": dag.get("dag_display_name"), "description": dag.get("description"), "schedule_interval": dag.get("schedule_interval"), "start_date": dag.get("start_date"), "end_date": dag.get("end_date"), "is_active": dag.get("is_active"), "is_paused": dag.get("is_paused"), "owners": dag.get("owners"), "tags": [t.get("name") for t in dag.get("tags", [])], "catchup": dag.get("catchup"), "max_active_runs": dag.get("max_active_runs"), "max_active_tasks": dag.get("max_active_tasks"), "has_task_concurrency_limits": dag.get("has_task_concurrency_limits"), "has_import_errors": dag.get("has_import_errors"), "next_dagrun": dag.get("next_dagrun"), "next_dagrun_data_interval_start": dag.get("next_dagrun_data_interval_start"), "next_dagrun_data_interval_end": dag.get("next_dagrun_data_interval_end") }
  • Registration call for common tools (including get_dag) in the v1 tools module.
    common_tools.register_common_tools(mcp)
  • Registration call for common tools (including get_dag) in the v2 tools module.
    common_tools.register_common_tools(mcp)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/call518/MCP-Airflow-API'

If you have feedback or need assistance with the MCP directory API, please join our Discord server