Skip to main content
Glama

get_task_instance_details

Retrieve detailed information about a specific task instance in Apache Airflow, including execution details, state, timing, and configuration.

Instructions

[Tool Role]: Retrieves detailed information about a specific task instance.

Args: dag_id: The DAG ID containing the task dag_run_id: The DAG run ID containing the task instance task_id: The task ID to retrieve details for

Returns: Detailed task instance information including execution details, state, timing, and configuration

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
dag_idYes
dag_run_idYes
task_idYes

Implementation Reference

  • The core @mcp.tool()-decorated handler function that implements the tool logic by querying the Airflow REST API for detailed task instance information.
    @mcp.tool() async def get_task_instance_details(dag_id: str, dag_run_id: str, task_id: str) -> Dict[str, Any]: """[Tool Role]: Gets detailed information for a specific task instance.""" resp = await airflow_request("GET", f"/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}") resp.raise_for_status() return resp.json()
  • The v1 registration function that configures the v1-specific airflow_request global and calls register_common_tools(mcp), which executes the @mcp.tool() decorators including for get_task_instance_details.
    def register_tools(mcp): """Register v1 tools by importing common tools with v1 request function.""" logger.info("Initializing MCP server for Airflow API v1") logger.info("Loading Airflow API v1 tools (Airflow 2.x)") # Set the global request function to v1 common_tools.airflow_request = airflow_request_v1 # Register all 56 common tools (includes management tools) common_tools.register_common_tools(mcp) # V1 has no exclusive tools - all tools are shared with v2 logger.info("Registered all Airflow API v1 tools (56 tools: 43 core + 13 management tools)")
  • The v2 registration function that configures the v2-specific airflow_request global and calls register_common_tools(mcp), which executes the @mcp.tool() decorators including for get_task_instance_details.
    def register_tools(mcp): """Register v2 tools: common tools + v2-exclusive asset tools.""" logger.info("Initializing MCP server for Airflow API v2") logger.info("Loading Airflow API v2 tools (Airflow 3.0+)") # Set the global request function to v2 common_tools.airflow_request = airflow_request_v2 # Register all 43 common tools common_tools.register_common_tools(mcp) # Add V2-exclusive tools (2 tools) @mcp.tool() async def list_assets(limit: int = 20, offset: int = 0, uri_pattern: Optional[str] = None) -> Dict[str, Any]: """ [V2 New] List all assets in the system for data-aware scheduling. Assets are a key feature in Airflow 3.0 for data-aware scheduling. They enable workflows to be triggered by data changes rather than time schedules. Args: limit: Maximum number of assets to return (default: 20) offset: Number of assets to skip for pagination (default: 0) uri_pattern: Filter assets by URI pattern (optional) Returns: Dict containing assets list, pagination info, and metadata """ params = {'limit': limit, 'offset': offset} if uri_pattern: params['uri_pattern'] = uri_pattern query_string = "&".join([f"{k}={v}" for k, v in params.items()]) resp = await airflow_request_v2("GET", f"/assets?{query_string}") resp.raise_for_status() data = resp.json() return { "assets": data.get("assets", []), "total_entries": data.get("total_entries", 0), "limit": limit, "offset": offset, "api_version": "v2", "feature": "assets" } @mcp.tool() async def list_asset_events(limit: int = 20, offset: int = 0, asset_uri: Optional[str] = None, source_dag_id: Optional[str] = None) -> Dict[str, Any]: """ [V2 New] List asset events for data lineage tracking. Asset events track when assets are created or updated by DAGs. This enables data lineage tracking and data-aware scheduling in Airflow 3.0. Args: limit: Maximum number of events to return (default: 20) offset: Number of events to skip for pagination (default: 0) asset_uri: Filter events by specific asset URI (optional) source_dag_id: Filter events by source DAG that produced the event (optional) Returns: Dict containing asset events list, pagination info, and metadata """ params = {'limit': limit, 'offset': offset} if asset_uri: params['asset_uri'] = asset_uri if source_dag_id: params['source_dag_id'] = source_dag_id query_string = "&".join([f"{k}={v}" for k, v in params.items()]) resp = await airflow_request_v2("GET", f"/assets/events?{query_string}") resp.raise_for_status() data = resp.json() return { "asset_events": data.get("asset_events", []), "total_entries": data.get("total_entries", 0), "limit": limit, "offset": offset, "api_version": "v2", "feature": "asset_events" } logger.info("Registered all Airflow API v2 tools (43 common + 2 assets + 4 management = 49 tools)")
  • Imports and global airflow_request setter used by the handler to make version-specific API requests.
    from typing import Any, Dict, List, Optional from ..functions import ( read_prompt_template, parse_prompt_sections, get_current_time_context, list_dags_internal, get_dag_detailed_info, PROMPT_TEMPLATE_PATH ) import logging logger = logging.getLogger(__name__) # Global variable to hold the version-specific airflow_request function # This will be set by v1_tools.py or v2_tools.py during registration airflow_request = None

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/call518/MCP-Airflow-API'

If you have feedback or need assistance with the MCP directory API, please join our Discord server