Skip to main content
Glama

MCP_WolframAlpha

MIT License
42
  • Linux
  • Apple

MCP Wolfram Alpha (Server + Client)

Seamlessly integrate Wolfram Alpha into your chat applications.

This project implements an MCP (Model Context Protocol) server designed to interface with the Wolfram Alpha API. It enables chat-based applications to perform computational queries and retrieve structured knowledge, facilitating advanced conversational capabilities.

Included is an MCP-Client example utilizing Gemini via LangChain, demonstrating how to connect large language models to the MCP server for real-time interactions with Wolfram Alpha’s knowledge engine.

Features

  • Wolfram|Alpha Integration for math, science, and data queries.
  • Modular Architecture Easily extendable to support additional APIs and functionalities.
  • Multi-Client Support Seamlessly handle interactions from multiple clients or interfaces.
  • MCP-Client example using Gemini (via LangChain).
  • UI Support using Gradio for a user-friendly web interface to interact with Google AI and Wolfram Alpha MCP server.

Installation

Clone the Repo

git clone https://github.com/ricocf/mcp-wolframalpha.git cd mcp-wolframalpha

Set Up Environment Variables

Create a .env file based on the example:

  • WOLFRAM_API_KEY=your_wolframalpha_appid
  • GeminiAPI=your_google_gemini_api_key (Optional if using Client method below.)

Install Requirements

pip install -r requirements.txt

Install the required dependencies with uv: Ensure uv is installed.

uv sync

Configuration

To use with the VSCode MCP Server:

  1. Create a configuration file at .vscode/mcp.json in your project root.
  2. Use the example provided in configs/vscode_mcp.json as a template.
  3. For more details, refer to the VSCode MCP Server Guide.

To use with Claude Desktop:

{ "mcpServers": { "WolframAlphaServer": { "command": "python3", "args": [ "/path/to/src/core/server.py" ] } } }

Client Usage Example

This project includes an LLM client that communicates with the MCP server.

Run with Gradio UI
  • Required: GeminiAPI
  • Provides a local web interface to interact with Google AI and Wolfram Alpha.
  • To run the client directly from the command line:
python main.py --ui
Docker

To build and run the client inside a Docker container:

docker build -t wolframalphaui -f .devops/ui.Dockerfile . docker run wolframalphaui
UI
  • Intuitive interface built with Gradio to interact with both Google AI (Gemini) and the Wolfram Alpha MCP server.
  • Allows users to switch between Wolfram Alpha, Google AI (Gemini), and query history.

UI

Run as CLI Tool
  • Required: GeminiAPI
  • To run the client directly from the command line:
python main.py
Docker

To build and run the client inside a Docker container:

docker build -t wolframalpha -f .devops/llm.Dockerfile . docker run -it wolframalpha

Contact

Feel free to give feedback. The e-mail address is shown if you execute this in a shell:

printf "\x61\x6b\x61\x6c\x61\x72\x69\x63\x31\x40\x6f\x75\x74\x6c\x6f\x6f\x6b\x2e\x63\x6f\x6d\x0a"
-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

MCP_WolframAlpha

  1. Merkmale
    1. Installation
      1. Klonen Sie das Repo
      2. Einrichten von Umgebungsvariablen
      3. Installationsvoraussetzungen
      4. Konfiguration
    2. Client-Verwendungsbeispiel
      1. Mit Gradio UI ausführen
      2. Docker
      3. Benutzeroberfläche
      4. Als CLI-Tool ausführen
      5. Docker

    Related MCP Servers

    View all related MCP servers

    MCP directory API

    We provide all the information about MCP servers via our MCP API.

    curl -X GET 'https://glama.ai/api/mcp/v1/servers/akalaric/mcp-wolframalpha'

    If you have feedback or need assistance with the MCP directory API, please join our Discord server