Skip to main content
Glama

AutoGen MCP Server

An MCP server that provides integration with Microsoft's AutoGen framework, enabling multi-agent conversations through a standardized interface. This server allows you to create and manage AI agents that can collaborate and solve problems through natural language interactions.

Features

  • Create and manage AutoGen agents with customizable configurations

  • Execute one-on-one conversations between agents

  • Orchestrate group chats with multiple agents

  • Configurable LLM settings and code execution environments

  • Support for both assistant and user proxy agents

  • Built-in error handling and response validation

Installation

  1. Clone the repository:

git clone https://github.com/yourusername/autogen-mcp.git cd autogen-mcp
  1. Install dependencies:

pip install -e .

Configuration

Environment Variables

  1. Copy .env.example to .env:

cp .env.example .env
  1. Configure the environment variables:

# Path to the configuration file AUTOGEN_MCP_CONFIG=config.json # OpenAI API Key (optional, can also be set in config.json) OPENAI_API_KEY=your-openai-api-key

Server Configuration

  1. Copy config.json.example to config.json:

cp config.json.example config.json
  1. Configure the server settings:

{ "llm_config": { "config_list": [ { "model": "gpt-4", "api_key": "your-openai-api-key" } ], "temperature": 0 }, "code_execution_config": { "work_dir": "workspace", "use_docker": false } }

Available Operations

The server supports three main operations:

1. Creating Agents

{ "name": "create_agent", "arguments": { "name": "tech_lead", "type": "assistant", "system_message": "You are a technical lead with expertise in software architecture and design patterns." } }

2. One-on-One Chat

{ "name": "execute_chat", "arguments": { "initiator": "agent1", "responder": "agent2", "message": "Let's discuss the system architecture." } }

3. Group Chat

{ "name": "execute_group_chat", "arguments": { "agents": ["agent1", "agent2", "agent3"], "message": "Let's review the proposed solution." } }

Error Handling

Common error scenarios include:

  1. Agent Creation Errors

{ "error": "Agent already exists" }
  1. Execution Errors

{ "error": "Agent not found" }
  1. Configuration Errors

{ "error": "AUTOGEN_MCP_CONFIG environment variable not set" }

Architecture

The server follows a modular architecture:

src/ ├── autogen_mcp/ │ ├── __init__.py │ ├── agents.py # Agent management and configuration │ ├── config.py # Configuration handling and validation │ ├── server.py # MCP server implementation │ └── workflows.py # Conversation workflow management

License

MIT License - See LICENSE file for details

Deploy Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    An MCP Server that enables multi-agent conversation interactions with the Stellastra API, auto-generated using AG2's MCP builder.
    Last updated -
    • Linux
    • Apple
  • -
    security
    F
    license
    -
    quality
    An auto-generated MCP server that enables interaction with the OpenAI API, allowing users to access OpenAI's models and capabilities through the Multi-Agent Conversation Protocol.
    Last updated -
  • A
    security
    F
    license
    A
    quality
    An intelligent MCP server that orchestrates multiple MCP servers with AI-enhanced workflow automation and production-ready context engine capabilities for codebase analysis.
    Last updated -
    3
    5

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/DynamicEndpoints/Autogen_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server