week-11-integration.test.ts•11.9 kB
/**
* Week 11 Integration Tests - Data Management and Analytics Server
* Comprehensive test suite proving all components work as documented
*/
import { jest } from '@jest/globals';
import { DataPipelineServer } from '../servers/data-analytics/src/data-pipeline';
import { RealtimeAnalyticsServer } from '../servers/data-analytics/src/realtime-analytics';
import { DataWarehouseServer } from '../servers/data-analytics/src/data-warehouse';
import { MLDeploymentServer } from '../servers/data-analytics/src/ml-deployment';
import { DataGovernanceServer } from '../servers/data-analytics/src/data-governance';
describe('Week 11: Data Management and Analytics Server - Integration Tests', () => {
let dataPipeline: DataPipelineServer;
let realtimeAnalytics: RealtimeAnalyticsServer;
let dataWarehouse: DataWarehouseServer;
let mlDeployment: MLDeploymentServer;
let dataGovernance: DataGovernanceServer;
beforeAll(async () => {
// Initialize all Week 11 servers
dataPipeline = new DataPipelineServer();
realtimeAnalytics = new RealtimeAnalyticsServer();
dataWarehouse = new DataWarehouseServer();
mlDeployment = new MLDeploymentServer();
dataGovernance = new DataGovernanceServer();
// Start all servers
await Promise.all([
dataPipeline.start(),
realtimeAnalytics.start(),
dataWarehouse.start(),
mlDeployment.start(),
dataGovernance.start()
]);
});
afterAll(async () => {
// Cleanup all servers
await Promise.all([
dataPipeline.stop(),
realtimeAnalytics.stop(),
dataWarehouse.stop(),
mlDeployment.stop(),
dataGovernance.stop()
]);
});
describe('Data Pipeline Server', () => {
test('should process data ingestion from multiple sources', async () => {
const testData = {
source: 'api',
data: { users: 1000, events: 50000 },
timestamp: new Date().toISOString()
};
const result = await dataPipeline.ingestData(testData);
expect(result.success).toBe(true);
expect(result.processedRecords).toBeGreaterThan(0);
expect(result.pipeline).toBeDefined();
});
test('should handle real-time streaming data', async () => {
const streamConfig = {
source: 'kafka',
topic: 'user-events',
batchSize: 1000
};
const stream = await dataPipeline.createStream(streamConfig);
expect(stream.isActive()).toBe(true);
expect(stream.getMetrics().throughput).toBeGreaterThan(0);
});
test('should validate data quality and transformations', async () => {
const rawData = { id: '123', name: 'Test User', email: 'invalid-email' };
const validation = await dataPipeline.validateData(rawData);
expect(validation.isValid).toBe(false);
expect(validation.errors).toContain('Invalid email format');
expect(validation.transformedData).toBeDefined();
});
});
describe('Realtime Analytics Server', () => {
test('should generate real-time metrics and dashboards', async () => {
const metricsQuery = {
timeRange: '1h',
metrics: ['user_count', 'revenue', 'conversion_rate'],
granularity: '5m'
};
const analytics = await realtimeAnalytics.generateMetrics(metricsQuery);
expect(analytics.data).toBeDefined();
expect(analytics.data.length).toBeGreaterThan(0);
expect(analytics.lastUpdated).toBeDefined();
});
test('should handle streaming analytics with windowing', async () => {
const windowConfig = {
type: 'tumbling',
duration: '5m',
aggregations: ['count', 'sum', 'avg']
};
const window = await realtimeAnalytics.createWindow(windowConfig);
expect(window.isProcessing()).toBe(true);
expect(window.getResults().length).toBeGreaterThanOrEqual(0);
});
test('should trigger alerts based on thresholds', async () => {
const alertConfig = {
metric: 'error_rate',
threshold: 0.05,
condition: 'greater_than',
window: '10m'
};
const alert = await realtimeAnalytics.configureAlert(alertConfig);
expect(alert.id).toBeDefined();
expect(alert.isActive).toBe(true);
});
});
describe('Data Warehouse Server', () => {
test('should perform ETL operations on large datasets', async () => {
const etlJob = {
source: 'production_db',
destination: 'analytics_warehouse',
transformations: ['clean_nulls', 'normalize_dates', 'aggregate_metrics']
};
const job = await dataWarehouse.runETL(etlJob);
expect(job.status).toBe('completed');
expect(job.recordsProcessed).toBeGreaterThan(0);
expect(job.executionTime).toBeLessThan(30000); // 30 seconds max
});
test('should execute complex analytical queries', async () => {
const query = `
SELECT
DATE_TRUNC('day', created_at) as date,
COUNT(*) as user_count,
AVG(session_duration) as avg_session
FROM user_sessions
WHERE created_at >= NOW() - INTERVAL '30 days'
GROUP BY DATE_TRUNC('day', created_at)
ORDER BY date DESC;
`;
const result = await dataWarehouse.executeQuery(query);
expect(result.rows).toBeDefined();
expect(result.executionTime).toBeLessThan(5000); // 5 seconds max
expect(result.rowCount).toBeGreaterThanOrEqual(0);
});
test('should manage data partitioning and indexing', async () => {
const tableConfig = {
name: 'user_events',
partitionBy: 'date',
indexes: ['user_id', 'event_type'],
compressionType: 'zstd'
};
const table = await dataWarehouse.createOptimizedTable(tableConfig);
expect(table.isPartitioned).toBe(true);
expect(table.indexes.length).toBe(2);
expect(table.compressionRatio).toBeGreaterThan(0.5);
});
});
describe('ML Deployment Server', () => {
test('should deploy and serve machine learning models', async () => {
const modelConfig = {
name: 'user_churn_predictor',
version: '1.0.0',
framework: 'tensorflow',
modelPath: '/models/churn_model.pb'
};
const deployment = await mlDeployment.deployModel(modelConfig);
expect(deployment.status).toBe('active');
expect(deployment.endpoint).toBeDefined();
expect(deployment.healthCheck()).resolves.toBe(true);
});
test('should handle model inference requests', async () => {
const inferenceRequest = {
modelName: 'user_churn_predictor',
input: {
user_id: '12345',
features: {
days_since_last_login: 7,
total_sessions: 45,
avg_session_duration: 12.5
}
}
};
const prediction = await mlDeployment.predict(inferenceRequest);
expect(prediction.probability).toBeGreaterThanOrEqual(0);
expect(prediction.probability).toBeLessThanOrEqual(1);
expect(prediction.confidence).toBeDefined();
expect(prediction.responseTime).toBeLessThan(100); // 100ms max
});
test('should monitor model performance and drift', async () => {
const monitoring = await mlDeployment.getModelMetrics('user_churn_predictor');
expect(monitoring.accuracy).toBeGreaterThan(0.8);
expect(monitoring.latency.p95).toBeLessThan(200);
expect(monitoring.drift.score).toBeLessThan(0.1);
expect(monitoring.requestCount).toBeGreaterThanOrEqual(0);
});
});
describe('Data Governance Server', () => {
test('should enforce data privacy and compliance rules', async () => {
const dataRequest = {
userId: 'user123',
dataTypes: ['personal_info', 'payment_data'],
purpose: 'analytics',
requester: 'data_science_team'
};
const approval = await dataGovernance.requestDataAccess(dataRequest);
expect(approval.status).toBe('approved');
expect(approval.conditions).toBeDefined();
expect(approval.expirationTime).toBeDefined();
});
test('should track data lineage and audit trails', async () => {
const lineage = await dataGovernance.getDataLineage('user_sessions');
expect(lineage.sources).toBeDefined();
expect(lineage.transformations).toBeDefined();
expect(lineage.destinations).toBeDefined();
expect(lineage.lastUpdated).toBeDefined();
});
test('should manage data quality metrics and validation', async () => {
const qualityCheck = {
dataset: 'user_profiles',
rules: [
{ field: 'email', type: 'format', pattern: 'email' },
{ field: 'age', type: 'range', min: 13, max: 120 },
{ field: 'created_at', type: 'not_null' }
]
};
const qualityReport = await dataGovernance.runQualityCheck(qualityCheck);
expect(qualityReport.overallScore).toBeGreaterThan(0.9);
expect(qualityReport.passedRules).toBeGreaterThanOrEqual(0);
expect(qualityReport.failedRows).toBeDefined();
});
});
describe('Integration Tests - Cross-Server Communication', () => {
test('should handle end-to-end data flow from ingestion to analytics', async () => {
// 1. Ingest data through pipeline
const testData = {
source: 'api',
data: Array.from({ length: 1000 }, (_, i) => ({
id: i,
user_id: `user_${i}`,
event_type: 'page_view',
timestamp: new Date().toISOString()
}))
};
const ingestionResult = await dataPipeline.ingestData(testData);
expect(ingestionResult.success).toBe(true);
// 2. Process real-time analytics
const analyticsResult = await realtimeAnalytics.processIncomingData(testData.data);
expect(analyticsResult.metricsGenerated).toBeGreaterThan(0);
// 3. Store in data warehouse
const warehouseResult = await dataWarehouse.loadData(testData.data);
expect(warehouseResult.rowsInserted).toBe(1000);
// 4. Validate with governance
const governanceResult = await dataGovernance.validateDataCompliance(testData.data);
expect(governanceResult.complianceScore).toBeGreaterThan(0.95);
});
test('should demonstrate MCP tool integration', async () => {
// Test MCP tools are properly registered and callable
const tools = await dataPipeline.listTools();
expect(tools.length).toBeGreaterThan(30); // Week 11 should have 30+ tools
expect(tools.some(t => t.name === 'ingest_data')).toBe(true);
expect(tools.some(t => t.name === 'generate_analytics')).toBe(true);
expect(tools.some(t => t.name === 'run_etl')).toBe(true);
});
});
});
/**
* Performance Benchmarks
* These tests ensure Week 11 components meet performance requirements
*/
describe('Week 11: Performance Benchmarks', () => {
test('data pipeline should handle 10k records/second', async () => {
const start = Date.now();
const testData = Array.from({ length: 10000 }, (_, i) => ({ id: i, data: 'test' }));
const result = await dataPipeline.ingestBatch(testData);
const duration = Date.now() - start;
expect(result.success).toBe(true);
expect(duration).toBeLessThan(1000); // Should process in under 1 second
});
test('realtime analytics should update within 100ms', async () => {
const start = Date.now();
const metrics = await realtimeAnalytics.generateMetrics({ timeRange: '5m' });
const duration = Date.now() - start;
expect(metrics).toBeDefined();
expect(duration).toBeLessThan(100);
});
test('ML inference should respond within 50ms', async () => {
const start = Date.now();
const prediction = await mlDeployment.predict({
modelName: 'test_model',
input: { feature1: 1.0, feature2: 2.0 }
});
const duration = Date.now() - start;
expect(prediction).toBeDefined();
expect(duration).toBeLessThan(50);
});
});