WEEK_12_PLAN.md•6.37 kB
# Week 12: Advanced AI Integration Server
## 🎯 Objective
Build comprehensive AI integration capabilities with model orchestration, ensemble methods, AutoML, neural architecture search, and AI operations.
## 📋 Components (5 Required)
### 1. Model Orchestration Engine
**File**: `servers/ai-integration/src/model-orchestration.ts`
**Purpose**: Coordinate multiple AI models and services
**Key Features**:
- Multi-model pipeline management
- Model composition and chaining
- Resource allocation and scheduling
- Cross-model communication protocols
- Performance optimization
**MCP Tools**:
- `create_model_pipeline`
- `execute_orchestration`
- `get_orchestration_status`
- `optimize_pipeline`
### 2. Ensemble Methods Service
**File**: `servers/ai-integration/src/ensemble-methods.ts`
**Purpose**: Combine multiple models for improved predictions
**Key Features**:
- Voting classifiers and regressors
- Stacking and blending algorithms
- Bagging and boosting methods
- Dynamic ensemble selection
- Performance benchmarking
**MCP Tools**:
- `create_ensemble`
- `train_ensemble`
- `predict_ensemble`
- `evaluate_ensemble`
### 3. AutoML Service
**File**: `servers/ai-integration/src/automl-service.ts`
**Purpose**: Automated machine learning and hyperparameter optimization
**Key Features**:
- Automated feature engineering
- Model selection and hyperparameter tuning
- Neural architecture search
- Automated pipeline generation
- Performance tracking
**MCP Tools**:
- `start_automl_experiment`
- `get_automl_results`
- `deploy_best_model`
- `optimize_hyperparameters`
### 4. Neural Architecture Search
**File**: `servers/ai-integration/src/neural-architecture-search.ts`
**Purpose**: Automated discovery of optimal neural network architectures
**Key Features**:
- Architecture search algorithms
- Performance estimation strategies
- Progressive search methods
- Multi-objective optimization
- Resource-aware architecture design
**MCP Tools**:
- `start_nas_experiment`
- `get_architecture_candidates`
- `evaluate_architecture`
- `deploy_discovered_architecture`
### 5. AI Operations (AIOps)
**File**: `servers/ai-integration/src/ai-operations.ts`
**Purpose**: Operational management of AI systems and workflows
**Key Features**:
- Model lifecycle management
- Performance monitoring and alerting
- Automated model retraining
- Drift detection and remediation
- Resource optimization
**MCP Tools**:
- `monitor_model_performance`
- `detect_model_drift`
- `trigger_retraining`
- `manage_model_lifecycle`
## 🏗️ Implementation Structure
```
servers/ai-integration/
├── src/
│ ├── model-orchestration.ts # Component 1
│ ├── ensemble-methods.ts # Component 2
│ ├── automl-service.ts # Component 3
│ ├── neural-architecture-search.ts # Component 4
│ ├── ai-operations.ts # Component 5
│ └── index.ts # Server entry point
├── test/
│ ├── model-orchestration.test.ts
│ ├── ensemble-methods.test.ts
│ ├── automl-service.test.ts
│ ├── neural-architecture-search.test.ts
│ └── ai-operations.test.ts
├── examples/
│ ├── orchestration-demo.js
│ ├── ensemble-example.js
│ ├── automl-workflow.js
│ ├── nas-experiment.js
│ └── aiops-monitoring.js
├── package.json
└── README.md
```
## 🔧 Technical Requirements
### Dependencies
```json
{
"dependencies": {
"@tensorflow/tfjs": "^4.0.0",
"optuna": "^0.1.0",
"ray": "^2.0.0",
"mlflow": "^2.0.0",
"kubeflow-pipelines": "^1.0.0",
"hyperopt": "^0.1.0",
"auto-sklearn": "^0.15.0"
}
}
```
### Integration Points
- Extends `BaseServer` from shared utilities
- Uses `withPerformanceMonitoring` decorator
- Implements `HealthChecker` interface
- Integrates with existing model deployment infrastructure
- Connects to data pipeline and warehouse systems
## ✅ Success Criteria
### Implementation Complete When:
- [ ] All 5 components implemented with full TypeScript interfaces
- [ ] MCP server classes extend BaseServer correctly
- [ ] All MCP tools properly defined and functional
- [ ] Comprehensive error handling with MCPError types
- [ ] Performance monitoring decorators applied
- [ ] Health checking endpoints operational
### Testing Complete When:
- [ ] Unit tests for all core functions (>90% coverage)
- [ ] Integration tests between components
- [ ] End-to-end workflow tests
- [ ] Performance benchmarking tests
- [ ] Error scenario testing
### Documentation Complete When:
- [ ] Component README files with usage examples
- [ ] MCP tool documentation with schemas
- [ ] API endpoint documentation
- [ ] Integration examples with existing systems
- [ ] Troubleshooting guide
## 🚀 Getting Started
### Setup Week 12 Environment:
```bash
# Create directory structure
mkdir -p servers/ai-integration/{src,test,examples}
# Initialize package.json
npm init -y --prefix servers/ai-integration
# Install dependencies
cd servers/ai-integration && npm install [dependencies]
# Copy base server template
cp shared/templates/base-server-template.ts src/index.ts
```
### Development Order:
1. **Model Orchestration** - Foundation for other components
2. **Ensemble Methods** - Build on orchestration framework
3. **AutoML Service** - Leverage ensemble capabilities
4. **Neural Architecture Search** - Extend AutoML functionality
5. **AI Operations** - Monitor and manage all components
### Testing Strategy:
```bash
# Run component tests
npm run test:week-12
# Run integration tests
npm run test:integration:week-12
# Run performance tests
npm run test:performance:week-12
# Run end-to-end tests
npm run test:e2e:week-12
```
## 📊 Expected Outcomes
By the end of Week 12, the system will support:
- Orchestrated execution of complex AI workflows
- Automated ensemble learning with multiple algorithms
- Complete AutoML pipelines from data to deployment
- Automated neural architecture discovery and optimization
- Comprehensive AI operations monitoring and management
This completes the Advanced AI Integration Server and sets the foundation for Week 13's implementation.
---
**Week 12 Status**: 🚧 READY TO START
**Prerequisites**: Week 11 Data Analytics Server ✅ COMPLETE
**Next Week**: Week 13 - Specialized Analysis Server